
LPC
The LPmud programming language

Edition 4.1
April 2005

by Ronny Wikh (mrpr@genesis.tekno.chalmers.se)

Copyright c
 1995-2005, Ronny Wikh
The use of this manual in any commercial venture is expressly forbidden, neither may it be
o�ered as inducement to purchase other services or products.
Permission is granted to make and distribute verbatim copies of this manual provided the copy-
right notice and this permission notice are preserved in full on all copies.
Permission is granted to copy and distribute modi�ed versions of this manual under the condi-
tions for verbatim copying, provided that the entire resulting derived work is distributed under
the terms of a permission notice identical to this one.
Permission is granted to copy and distribute translations of this manual into another language,
under the above conditions for modi�ed versions, except that this permission notice may be
stated in a translation approved by the holder of the above copyright.

1

LPC

LPmud is a very fascinating game to play, but even more so to develop. There's very little that
you can't do if you really set your mind to it, though it might be a bit tricky at times. The
strongest lure naturally is the multi-user quality of the game; to actually have hundreds, yes
even thousands of players enjoying your code is a great feeling.

This tutorial will teach you the necessary basic knowledge needed to create code in the
LPmud environment, and Genesis in particular. It's no easy read though, so please expect to
spend a few days assimilating and learning what I'll try to teach you here. Apart from this dire
warning I would just like to wish you a pleasurable time coding once the initial hurdle is behind
you.

| Ronny Wikh, 8 April 2005

2 LPC 4.1

3

Copying Conditions

This tutorial was produced in good faith for use by people who like to program muds for their
own pleasure. That means that I won't charge for using or distributing it provided that this is
the purpose it's being used for.

Speci�cally, I want to make sure that those who run commercial muds don't provide this
manual as an aid to further their monetary aims. If they want it they can either pay me a lot
of money for it or produce one of their own.

Please read the copyright statement in the printed section of this manual to get the full
text. The gist of it, however, is exactly what I just related here.

4 LPC 4.1

5

Introduction

This tutorial is intended to be something that anyone can read and learn from. Now, this is, of
course, impossible, so let's amend that a bit. It's a tutorial that anyone with at least a bit of
knowledge of programming and a will to learn can use. You don't have to know about C before
you start, and I believe that even true virgins might be able to learn how to code. They will, of
course, have a much harder job though.

Experienced coders, even mud coders, will need to read the tutorial since it explains concepts
that are unique for this game, but they will be able to skim most of it and focus only on the
trickier bits. I leave the selection of what is and what is not important to you, the reader, since
you're the only one who knows how much you need to learn.

As the LPC language in actual application is closely knitted to the mudlib which it is used
in, I will also cover part of that. However, I will not teach you how to use the mudlib in detail,
you'll have to read other documents for that. All of this makes this tutorial pretty speci�c for
games, and Genesis in particular. Keep this in mind if you are reading it on another game.

I hope you'll �nd the tutorial useful and worth the e�ort it takes to read. It sure took a lot
of e�ort to write, so it'd better not be for nothing! :)

i - Acknowledgments
I'd like to start by thanking Thorsten Lockert, Christian Markus and Bobby Bodenheimer
(perhaps better known as Plugh, Olorin and Plarry) for their help in proofreading this text,
suggesting improvements and in general being supportive and providing constructive feedback.

Without them this rather lengthy project would have taken even longer (mind-boggling,
but true) to complete and ended up a lot worse.

A Lot of people on Genesis have contributed with suggestions for this tutorial and I grate-
fully acknowledge their help in providing hints on what people would like to know about LPC.

ii - Tutorial Setup
The manual is divided into three progressively more advanced chapters. The �rst chapter will
be explain basics about coding and LPC without delving too deep into speci�cs.

The second chapter will be for a more intermediate level of coding, explaining in full all
the aspects of functions and operators that might have been treated a bit too easy in the �rst
chapter.

The third and �nal chapter handles whatever might be left when chapter two is done. Well,
not everything ; the tutorial will not explain all the intricacies of the gamedriver and the mudlib.
If you are looking for info about creating your own mudlib or doing very advanced stu� you'll
have to learn that from reading the actual code.

If you are a newbie wizard you might feel a bit taken back at �rst, looking at this rather
thick tutorial. However, it's quite necessary that you read all of it and leave nothing for the
future. You will undoubtedly have to at least recognize subjects from all three chapters, even
though mostly you will actually only use the information in the �rst two. Heck, there's a lot
of old wizards out there who hardly even master the �rst one, a scary thought! Among other
things that's one of the fundamental reasons why I'm writing this manual...

The manual is fairly extensive, but it's for learning LPC for domain coding only. This
means that it's not a complete LPC reference manual. Some of the more esoteric and unusual
efuns and functionalities are not covered since they only would be used by mudlib coders or

6 LPC 4.1

gamedriver hackers. This manual is not intended for them. Sorry, if that's what you were
looking for you'll have to keep on searching for another source.

A small note about gender. Throughout the text I've used male pronouns. This is not
because I sco� the thought of female coders, it's because the English language is male-oriented.
Fact of life, like it or not. I guess I could have added a `(or she)' comment after all occurrences
of the male `he', but that strikes me as more than just a bit silly. Until the English language
comes up with a strictly neutral pronoun I'll stick with using the all-inclusive male one.

iii - History of LPC
LPC is the interpreted mud language created by Lars Pensj�o for his invention LPMUD, an
interactive multi-user environment suited for many purposes, games not being the least of them.
Since the �rst appearance in 1988 the language has changed dramatically.

Development was taken over by other people at Chalmers Datorf�orening, primarily Jakob
Hall�en, Lennart Augustsson and Anders Chrigstr�om around 1990. They extended and re�ned
the language extensively, but, as the name LPC hints of, it still retains its links to the language
'C'. The main di�erences lie in the object structure that's imposed on the language as well as
some new data types to faciliate game programming. The language is not as free-form as 'C',
but on the other hand it's more suitable for the purpose which it was created for - programming
in a game environment.

iv - Gamedriver/Mudlib
The distinction between gamedriver and mudlib might seem hard to de�ne at times, but it's
really very simple. The gamedriver is the program that runs on the host computer. It is basically
an interpreter in conjunction with an object management kernel, almost a small operating system
in its own right. It de�nes and understands the LPC language, interprets it and executes the
instructions given to it through the LPC objects in the game.

The mudlib is the collection of LPC objects that make up the basic game environment.
While the gamedriver knows nothing about what it actually is doing, the mudlib does. (The
mudlib can conversely be said to have no idea about how it does what it does, while the
gamedriver does). It contains the basic set of LPC objects that are used in the game, the
players, the monsters, the rooms etc. Individual e�orts (domain code) are stored and handled
separately and uses both the services of the gamedriver and the mudlib.

v - Administrative Setup
The game can be said to have been divided into three distinctive parts as suggested above;
The gamedriver, the mudlib and the domain code. The gamedriver and mudlib I have already
explained. The domain concept is a way to organize the way code is written. A domain is
principally a group of wizards working towards a prede�ned goal. This project can be limited
in space, an actual area in the game world, or as intangible as a guild or sect that the players
can become members of.

Within a domain there is a leader, a domain Liege. He is the local project leader who
decides what goes on and in which direction work should progress. In the domain all code is
shared easily and usually is strongly interconnected.

Naturally there have to be ties between di�erent domains as well, but these are usually
weaker and actual code is seldom shared.

As a newbie wizard you will try to �nd a domain in which to enroll, that sounds interesting
and inspiring to work with.

7

vi - Writing code
It might seem premature to tell you what your code should look like before you have learnt how
to write it. However, it is a fundamental subject of great importance. Someone jokingly said
that writing code correctly will make your teeth whiter, your hair darker and improve your sex
life. Well... it might not do that, but it'll certainly improve the overall quality of what you
produce, at a very low cost. Mainly it's a matter of self-discipline.

Here are some good arguments for making the e�ort:
� It makes the code much more readable, not only for others, but also for yourself, particularly

if you have to read or alter the code six months after you produced it. Please remember
that the code you write now may have a life of several years, perhaps even decades. This
game has been running since the late eightees and a lot of code goes waaaay back.

� Since it is easier for others to read, and hence easier to understand what you have done, it
will be easier to help you in case of problems.

� Writing code properly actually makes it better, believe it or not. The reason for this is
simply that writing code badly makes it easy to miss simple errors that get hidden in the
crummy code.

� It can be real hard to �nd people willing to help you debug badly formatted code. I
personally will not help people to debug code that looks too awful. The reason is that it's
simply not worth the e�ort. With bad looking code there'll be lots of stupid errors (see
previous point) that'll turn up as soon as you start to indent the code properly.

I strongly recommend you to buy and read the book The Practice Of Programming (Brian
W. Kernighan, Rob Pike. Addison Wesley ISBN 0-201-61586-X).

What follows here is a rather lengthy instruction of how to put down your code in writing.
Read it now even though you might not fully understand what is being discussed, then go back
and re-read it later after having learnt the skills necessary. Doing that will make sure you'll
remember the correct way of formatting your code.
1. One indent level is 4 spaces long, no more, no less. A new indent level is started at the

beginning of each block.
2. Reserved words have a space after them, before the opening (, if any.

while (test)
statement;

3. Block brackets start and end in the same column; the column of the �rst letter in a statement
opening a block.

if (this)
statement;

else if (that)
another_statement;

else
default_statement;

Now, this is almost a religious matter for some coders. Representatives for another sect
preaches that the block opening brace should be on the end of the line of the block statement
and how you do this really isn't that important. Not as long as you do it exactly the way
I say, or you'll burn in COBOL hell forever :) No, seriously, pick one of the two ways
of doing it and stick to it. What is really important is that you keep the indention-level

8 LPC 4.1

straight throughout the code. If we all agree on something, it's that wavy indention-levels
is something not to be tolerated.
As it happens, using almost any of the freely available editors for writing C-code (I recom-
mend emacs) will take care of this problem for you, and at the same time provide some
rudimentary syntax-checking functionality.

4. Several arguments on a line separated by a comma or a semicolon have a space following
the comma or semicolon. Binary operators have a space both in front of, and after the
operator.

int a, b, c;

for (a = 0; a < 10; a++)
{

b = function_call(a, b * 2);
c = b * 3 / 4;

}
5. If a loop statement has no body, put the ending ; on a separate line.

while (!(var = func(var)))
;

The reason for this is that if you should put it on the same line, it's very easy to miss real
mistakes like this one just out of pure laziness:

for (i = 0; i < 100; i++);
{

<code that gets executed only once, but always>
}

6. All #define and #include statements should be placed at the top of the �le. It's possible
to spread them out, but that will just be confusing.

7. The same goes for prototypes and global/static variables used in the �le. Lump them all
together, with a proper comment header, in the top of the �le. It's possible to spread them
out, but oh how easy it is to miss them when reading the code later...

8. Declarations of functions have the return type on a separate line from the function name.
public void
my_function(int a, int b)
{

< code >
}

9. While modern editors will do a lot of work here, it doesn't really hurt to reak long lines of
code in proper places so that they don't wrap on their own beyond the end of a 80-width
screen. Reading the code becomes a lot easier when you help out a bit.

10. The �le should begin with a proper header following this outline:
/*
* <filename>
*
* <Short description of what the file does, no more than 5-7 lines.
* ...
* ... >
*
* Copyright (C): <your name and year>
*
*/

9

Read the game Copyright statement NOW in order to know what rules apply to code you
produce for the game, in the game. It ought to reside in the �le `/doc/COPYRIGHT'. If not,
simply ask one of the game administrators.

11. Start every function with a header looking like this:
/*
* <A description of what the function does.>
*
* Arguments: <A list of all arguments, one per line
* arg1 - description no longer than the line.
* arg2 - next argument, etc. >
* Returns: <What the function returns>
*/

If the function doesn't take any arguments, or doesn't return anything, keep the �elds
anyway and put in the text None. That way it is clear that you haven't forgotten anything,
but in fact intended for the function to look the way it does.

12. Put suitable comments in the code here and there when doing something that might look
a bit obscure. Remember also that on your (assumed) level of competence, a lot of things
are obscure :) Use your own judgement.

/*
* Comment for code following this comment,
* telling what it does
*/
< code >

13. Make sure all function names and local variables are written in lowercase alphabetical char-
acters, possibly spacing words with an underscore (e.g. function_name()). Global variables
should be written using the �rst letter of the word capitalized (e.g. int GlobalTime;).
#defines should be written in capitals (e.g. #define AMOEBA "one celled creature").
Doing this makes it easy to see what kind of symbol is being handled at all times.

Now, the easiest way of getting the basic stu� done properly is to use the emacs editor, set
up to use a modi�ed c++ mode. The c++ mode understands about ::-operators but needs a few
hints on tab stops etc. Put these lines of code into your .emacs �le and all will work just as it
should:

;; emacs lisp script start

(setq auto-mode-alist (append '(
("\\.l" . my-c++-mode)
("\\.y" . my-c++-mode)
("\\.c" . my-c++-mode)
("\\.h" . my-c++-mode))
auto-mode-alist))

(defun my-c++-mode () (interactive)
(c++-mode)
(setq c-basic-offset 4)
(setq c-offsets-alist

'((string . -1000)
(c . c-lineup-C-comments)
(defun-open . 0)
(defun-close . 0)

10 LPC 4.1

(defun-block-intro . +)
(class-open . -)
(class-close . 0)
(inline-open . +)
(inline-close . 0)
(ansi-funcdecl-cont . +)
(knr-argdecl-intro . +)
(knr-argdecl . 0)
(topmost-intro . 0)
(topmost-intro-cont . 0)
(member-init-intro . +)
(member-init-cont . 0)
(inher-intro . +)
(inher-cont . c-lineup-multi-inher)
(block-open . 0)
(block-close . 0)
(brace-list-open . 0)
(brace-list-close . 0)
(brace-list-intro . +)
(brace-list-entry . 0)
(statement . 0)
;; some people might prefer
;;(statement . c-lineup-runin-statements)
(statement-cont . +)
;; some people might prefer
;;(statement-cont . c-lineup-math)
(statement-block-intro . +)
(statement-case-intro . +)
(statement-case-open . 0)
(substatement . +)
(substatement-open . 0)
(case-label . 0)
(access-label . -)
(label . 2)
(do-while-closure . 0)
(else-clause . 0)
(comment-intro . c-lineup-comment)
(arglist-intro . +)
(arglist-cont . 0)
(arglist-cont-nonempty . c-lineup-arglist)
(arglist-close . +)
(stream-op . c-lineup-streamop)
(inclass . +)
(cpp-macro . -1000)
(friend . 0)
(objc-method-intro . -1000)
(objc-method-args-cont . c-lineup-ObjC-method-args)
(objc-method-call-cont . c-lineup-ObjC-method-call)
)))

;; emacs end

11

An added advantage of using emacs is that later, when debugging other coder's attempts
at writing code, correcting their horrible indention is as easy as typing 'M-<', 'M->', 'M-C-\'.

12 LPC 4.1

Chapter 1: LPC basics 13

1 LPC basics

This chapter will teach you the very basics of programming, essential for understanding what
follows. It will also introduce you to the concept of object oriented programming and explain
some of the mudlib.

1.1 Basic programming concepts
We begin with he basic programming principles and the structure of LPC and the LPC envi-
ronment.

1.1.1 What is programming?

This is a very philosophical question really. However, lets stick to the practical side and leave
the Zen bit to those who go for that kind of stu�.

Programming basically is the art of identifying a problem and putting the solution into
symbols a computer can understand. A good programmer has a highly developed ability to see
how a given problem can be split into smaller problems for which he has several solutions, and
he also knows which particular solution he should pick to make the result as e�ective in terms
of memory and speed as possible.

A programmer, as the previous passage suggests, actually tells the computer how to solve
a problem. A computer can not come up with a solution to a problem itself. However, it's a
lot quicker than you are, so problems that you can solve but would take you several lifetimes or
simply just 'too long' are handled quickly by the computer.

What you need to learn is that special way of thinking that allows you to do this 'subdi-
viding' thing where you see the steps needed to get from the beginning state to the solved state.
You also need to learn the methods that make up these steps. Naturally this tutorial won't
teach you 'how to program', it will only teach you the language used to put down the program
in.

Who'll teach you programming then, in case you don't already know how to? Well...
primarily other wizards in the game, and then yourself. Hard work in other words, there's never
any shortcuts unfortunately, no matter what you need to learn. However, since this is a very
amusing game let's hope you'll have great fun while acquiring the skills.

1.1.2 Compiled/Interpreted code

Programs are nothing but �les containing instructions suited for the computer to understand.
To program is to write instructions in such a way that the computer reaches a prede�ned goal.
Usually a program is compiled - translated - into a low-level code expressed in binary symbols
(high and low electrical states in computer memory) which the computer understands with ease.
The actual language you use to program in is merely a convenient go-between, a compromise
which both you and the computer can understand. The reason you compile code is that the
translation step is fairly complicated and time-consuming. You'd rather just do that once and
then store the result, using it directly over and over again.

LPC however, isn't compiled, it's interpreted. The instructions are read and translated to
the computer one by one, executed and forgotten. Well, this is not 100% true. In fact, the
gamedriver which is the program running on the host computer translates the LPC code into
an intermediate simple instruction code. This set of instruction codes makes up the code part
of the so called 'master object' held in computer memory. When you run an LPC program,
the instruction set is traced, line by line as described above, causing the computer to execute a
prede�ned set of actions de�ned by the instructions.

14 LPC 4.1

The di�erence between having interpreted and compiled code is that while the compiled
code is quicker, the interpreted version is much easier to modify. If you want to change something
in the compiled version you have to make the change in the source code, then recompile and
store the new version, then try it out. With interpreted code you just make the change in the
source and run it. With LPC you need to instruct the gamedriver to destroy the old master
object instruction set as well, but more about that later.

1.1.3 Programs

LPC programs are described above as �les containing instructions to the computer written in the
language LPC. These �les must be named something ending in the letters `.c' (e.g. `test.c')
so that the gamedriver knows what it's dealing with; an LPC program. Program names can
be any string of printable characters < 32 characters in length, beginning with an alphabetical
letter. However, in practice it is recommendable that you limit yourself to < 16 letter strings
that are made up of ordinary lowercase alphabetical letters only. If you want the name to be
made up by two words, separate them with the `_'- character (e.g. `my_file_name.c').

1.1.4 Objects

An object in LPC is simply a copy of an existing and loaded program in computer memory. When
a program is loaded into memory to produce a master object, the code is compiled to produce
the instruction list described earlier and a chunk of memory is associated to it as speci�ed by
the program code for use for internal global variables (described later). When a copy, a clone
of this program is made, a special reference called an object pointer is created. That pointer
is given a reference to the master code instruction list and a unique chunk of memory. If you
clone the object another time, a new pointer is created and a new chunk of memory allocated.
When an object is destroyed its associated memory is freed for use by other objects, but the
instruction list is kept untouched. An object is always cloned from the master object. If you
want to change the program you must update the master object to instruct the gamedriver that
a new list of instructions is to be compiled from the source code.

However, any already existing clones will not change just because the master does. They
will keep their reference to the old object. It's important that you remember this so that you
don't believe that the behaviour of an old cloned object changes just because you have updated
the master object. As you see it's possible to have clones of objects in the game that behave
di�erently, simply because they are made out of di�erent source codes; just cloned between
updates and changes in code. This could be a great source of confusion, so keep it in mind.

1.1.5 Object makeup

An object is comprised of something called functions and variables. A function is a set of
instructions you can reference by a name. A variable is a kind of container you can store data in
for use by the functions. Some functions are already de�ned by the gamedriver, they are called
external functions, or efuns. Functions de�ned in LPC code are called local functions, or lfuns.
To confuse matters further there is a set of functions that count as efuns, but are written in
LPC. These functions are called simulated efuns or sfuns.

An efun basically is a function that is impossible to create in LPC. Take for example the
function write() that allows you to present text on the screen of a player. It's impossible to
make that up from other functions in LPC, so it has to be in the gamedriver. This efun is
available in all LPC programs. Efuns also have no idea about what environment they are used
in. They don't care one bit if they are used to simulate strawberry tasting, or as part of a game.

A function like add_exit() on the other hand, that adds an exit in a room is only available
in room type objects. It is written in LPC. The lfuns as a rule are part of the makeup of the

Chapter 1: LPC basics 15

environment in which the objects are used. The example add_exit() for instance is well aware
of such ideas as directions and travel costs, a very limited and speci�c concept.

The function creator() is a good example of the third case. It's a function that is available
in every object, it returns information about who created a certain object. This information is
very speci�c to the environment since it deals with such notions as code localization. This kind
of function is easy to write in LPC but on the other hand it must be available in all objects,
as if it was an efun. Due to this fact the special object `/secure/simul_efun.c' is made to be
automatically available from all other objects in the game, you'll �nd all sfuns in there. This
functionality is perfectly transparent to you; you just use them as you use any other efun and
you don't have to be aware of that it really is an sfun.

1.2 Basic LPC
LPC if fairly similar to the language C, although some di�erences exist. As the experienced
coder will �nd, it basically is a bit simpli�ed with some new convenient types added and a set
of functions to handle those types. Some inconsistencies exist but they are not serious enough
to cause any problems as long as you are aware of them.

1.2.1 Comments

It might sound strange that I start o� with this, but there'll be comments everywhere, so you
need to be able to recognize them from the very start.

There are two kinds of comments:
<code> // This is a comment stretching to the end of the line.

<code> /* This is an enclosed comment */ <code>

As you can see, the �rst type of comment starts o� with the // characters and then stretches
all the way to the end of the line. If you want more lines of comments, you'll have to start o�
those as well with new // characters.

The second type is a type that has a de�nite length. They start with /* and end with */.
This kind of comment is useful when you have to write something that will stretch over several
lines, as you only have to write the comment symbol in the start and the beginning.

NB! The /* */ comment can not be nested. I.e. you can not write something like this for
example:

/* A comment /* A nested comment */ the first continues */

What will happen is that the comment will end with the �rst found */, leaving the text
the first continues */ to be interpreted as if it was LPC code. Naturally this won't work
and instead you'll get an error message.

1.2.2 Data types

The object holds information in variables. As the name hints these are labeled containers that
may hold information that varies from time to time. It processes information in functions that
both use and return data of various kinds.

In principle only one kind of data type is needed, a sort of general container that would
cover anything you wanted to do. In reality it's much preferred if you can distinguish between
di�erent types of information. This might seem only to add to your programming problems, but
in fact it reduces the risk of faulty code and improves legibility. It much improves on the time
it takes to code and debug an object.

16 LPC 4.1

In LPC it is possible to use only that 'general purpose' data type I was talking about before.
In the �rst versions of the language it was the only kind available. However, with the LPC we
have today it is much preferable if you avoid that as much as you can. In fact, start all your
programs with the following instruction on a single line:

#pragma strict_types

This is an instruction to the gamedriver to check all functions so that they conform to
the situation they are used in, and cause compile errors otherwise. This is a very great help
in detecting programming errors early so that you don't wonder what's going on later when
things don't turn out quite the way you wanted. It also makes the code easier to maintain in
the long run, as modi�ations of the existing code less easily introduces sudden undetected but
incompatible changes.

Now, the following types of data types are de�ned:
`void' `Nothing'

This data type is used exclusively for functions that don't return any data at all.
`int' `Integers'

Whole numbers in the range -2147483648 to 2147483647. e.g. 3, 17, -32, 999.
`float' `Floating point numbers'

Decimal numbers of any kind in the approximate range 1.17549435e-38 to
3.40282347e+38. e.g. 1.3, -348.4, 4.53e+4. The range values are approximate
since this might vary from mud to mud as it's platform dependant.
If there are any FORTRAN fossils around there, beware that numbers like 1. or
.4711 are not recognized as
oats, you have to specify both an integer and a decimal
part, even if they only are 0.

`string' `Character strings'
Strings are simply a series of printable characters within quotes, e.g. "x", "the
string", "Another long string with the number 5 in it". Strings can contain
special characters like newline ("\n") to end a line. A lot of LPC expressions can
handle strings directly, unlike usual C. This makes strings very handy and easy to
use.

`mapping' `Associated value pair list'
Mappings are another handy LPC invention (memory expensive, use with care!).
A mapping is simply a list of associated values. Assume you want to remember
the ages of people, like Olle is 23, Peter is 54 and Anna is 15. In LPC you can
write this as (["Olle":23, "Peter":54, "Anna":15]). As you can see the value
to the right has been associated to the value to the left. You can then extract the
associated value through a simple indexing operation using the left hand value as
index.

`object' `Object pointer'
They are references to LPC programs that has been loaded into memory.

`function'
`Function pointer'
They are references to LPC functions.

`Array' All of the above can appear in arrays, indicated by a * in front of the variable name
in the declaration.
Arrays in LPC are more like lists than proper arrays. A number of functions and
operator facilities exist to make them easy and quick to use.

Chapter 1: LPC basics 17

`mixed' This, �nally, is a general descriptor covering all the other, a sort of jack-of-all-trades
type. Again, let me stress the fact that using it except when absolutely necessary
only provokes mistakes.
Hmm, as pointed out to me this might sound a bit too strict. The mixed type is
used for good reasons fairly often. What I mean is that when a speci�c type can be
used, you should use it. Don't substitute it for mixed just because you feel lazy.

1.2.3 Variable declarations

A variable is a string of letters identifying an information 'box', a place to store data. The box
is given a name consisting of a maximum of 32 characters, starting with an alphabetic letter.
Custom and common sense dictate that all variables used inside a function consist of lowercase
letters only. Global variables have the �rst letter in uppercase, the rest lowercase. No special
character other than the ' ' used to separate words is ever used. Variables should always be
given names that re
ect on their use. You declare variables like this:

<data type> <variable name>, <another variable>, ..., <last variable>;
e.g.

int counter;
float height, weight;
mapping age_map;

Variables must be declared at the beginning of a block (right after the �rst '{') and before
any code statements. Global variables, variables that are available in all functions throughout
the program, should be declared at the top of the �le.

When the declarations are executed as the program runs, they are initially set to 0, NOT
to their 'null-state' values. In other words for example mappings, arrays and strings will all be
set to 0 and not to ([]), ({}) and "" as you might believe. It is possible to initialize variables
in the declaration statement, and it's even a very good habit always to initialize arrays and
mappings there:

<data type> <variable name> = <value>, etc.
e.g.

int counter = 8;
float height = 3.0, weight = 1.2;
mapping age_map = ([]);
object *monsters = ({});

The reason why arrays and mappings should be initialized in the declaration statement to
their 'NULL' values (({}) and ([]) respectively) is that otherwise they are initialized to 0,
which is incompatible with the proper type of the variable and might cause problems later on
in the function they are part of.

1.2.4 Function declarations

A function must give proper noti�cation of what kind of data type it returns, if any. A function is
a label much like a variable name, consisting of < 32 characters, starting with a letter. Custom
and common sense dictate that all function names should be lowercase and only contain the
special character ' ' to separate words. Use function names that clearly re
ect on what they do.
A function declaration looks like this:

/*
* <A description of what the function does.>
*
* Arguments: <A list of the arguments and what they contain>
* Returns: <What the function returns>

18 LPC 4.1

*/
<return type>
<function name>(<argument list>)
{

<code expressions>
}

/*
* Compute the diameter of a circle given the circumference.
*
* Variables: surf_area - the surface area
* name - the name given the circle
* Returns: The circumference.
*/
float
compute_diam(float surf_area, string name)
{

float rval;

// Circumference = pie * diameter
rval = surf_area / 3.141592643;
write("The diameter of " + name + " is " + ftoa(rval) + "\n");

return rval;
}

The argument list is a comma-separated list of data types, much like a variable declaration
where you specify what kind of data will be sent to the function and assign names to this data
for later use in the function. The data received will only be usable inside the function, unless
you explicitly send it out through a function call.

(In order to save space and improve on legibility in the manual I won't put a header to all
my short example functions).

A function that doesn't return anything should be declared as void.
void
write_all(string mess)
{

users()->catch_msg(mess);
}

1.2.5 Statements and Expressions

We need to de�ne what a statement and what an expression is in order to be able to proceed.

1.2.5.1 Statements

A statement is sort of a full sentence of instructions, made up from one or more expressions.
Statements usually cover no more than a single line of code. Sometimes it's necessary to break
it up though if it becomes too long, simply to improve on legibility. For most statements you
simply break the line between two words, but if you are in the middle of a string you need to
add a backslash (\) at the end of the line in order for the gamedriver to understand what's going
on.

write("This is an example of \
a broken string.\n");

Chapter 1: LPC basics 19

However, breaking a statement with backslash is extremely ugly and makes the code hard
to read. In fact, it's usually possible to break the line naturally at the end of a string, between
two operators of some kind, or even just split the string in half and add the two parts together
with the + operator. The only time the backslash really is necessary is in #define-statements,
handled later.

write("This is a better way of " +
"breaking a string.\n");

Statements in LPC are usually ended with a ;, which also is a good place to end the line.
There's nothing stopping you from entering another statement right after, other than that it
will look awful.

1.2.5.2 Expressions

An expression is an instruction or set of instructions that results in a value of some kind. Take
+, for example. It uses two other expressions to make up a result. A variable is an expression
since it yields its contents as a result. The combination of the following two expressions and
an operator is a valid expression: a + b, a and b being variables (expressions) and + being the
operator used on them. a = b + c; is a full statement ending in a ;.

Function calls are valid expressions. They are written simply as the name followed by a
set of matched parentheses with the arguments that the functions uses listed inside. Take the
simple function max() for example, that returns the max of the two arguments. To determine
the maximum of 4 and 10, you would write max(4, 10) as the expression. Naturally the result
must be either stored or used.

1.2.5.3 The block statement

There are a lot of statements, for example conditional statements, that in certain circumstances
execute one speci�ed statement and never otherwise. Suppose you want to have several state-
ments executed and not just a single one? Well, there's a special statement called block state-
ment that will allow you to do that. A block is de�ned as starting with a { and ending with a }.
Within that block you may have as many statements of any kind (including variable de�nitions)
as you like. The block statement is not ending with a ;, even though it wouldn't matter if you
accidentally put one there.

1.2.5.4 The ; statement

As stated ; is mostly used to terminate statements, however it's also a statement in its own
right.

The ; on it's own will simply be a null-statement causing nothing to happen. This is useful
when you have test-clauses and loops (described later) that perform their intended purpose
within the test or loop clause and aren't actually intended to do anything else.

1.2.6 Scope and prototypes

Scope is a term de�ning where a function or variable declaration is valid. Since programs are
read top down, left right (just like you read this page), declarations of functions and variables
are available to the right and below of the actual declaration. However, the scope might be
limited.

A variable that is declared inside a function is only valid until the block terminator (the
terminating }) for that variable is reached.

< top of file >
int GlobCount;

20 LPC 4.1

// Only GlobCount is available here

void
var_func(int arg)
{

int var_1;

// GlobCount, arg and var_1 is available here
< code >

{
string var_2;

// GlobCount, arg, var_1 and var_2 is available in this block
< code >

}

// GlobCount, arg and var_1 is available here
< code >

{
int var_2;
mapping var_3;

// GlobCount, arg, var_1, var_2 and var_3 is available here
// NB this var_2 is a NEW var_2, declared here
< code >

}

// GlobCount, arg and var_1 is available here
< code >

}

// Here only GlobCount (and the function var_func) is available

Function declarations follow the same rule, though you can't declare a function inside
another function. However, suppose you have these two functions where the �rst uses the
second:

int
func_1()
{

< code >
func_2("test");

}

void
func_2(string data)
{

< code >
}

Chapter 1: LPC basics 21

Then you have a problem, because the �rst function tries to use the second before it is
declared. This will result in an error message if you have instructed the gamedriver to require
types to match by specifying pragma strict_types as suggested earlier. To take care of this
you can either re-arrange the functions so that func_2 comes before func_1 in the listing, but
this might not always be possible and the layout might su�er. Better then is to write a function
prototype. The function prototype should be placed in the top of the �le after the inherit
and #include statements (described later) but before any code and look exactly as the function
declaration itself. In this case:

< top of file, inherit and #include statements >

void func_2(string data);

< the actual code >

1.2.7 Operator expressions

The LPC language de�nes a large set of operators expressions, simply expressions that operate
on other expressions. What follows here is a list of them. I've used a condensed notation so
that the text won't take all of the page before getting down to actual explanations.

`E' Any expression, even a compound one.
`V' A variable.

1.2.7.1 Miscellaneous operators
1. (E) E is evaluated before doing anything outside the parenthesis. This is useful for isolating

expressions that need to be done in a speci�c order, or when you are uncertain about
precedence (described later).

2. E1, E2 E1 is evaluated �rst and the result stored, then E2 is evaluated and the result thrown
away, lastly the stored result of E1 is returned as the value of the entire expression.

The statement 'a = 1, 2, 3;' will set 'a' to contain '1'.

3. V = E The variable is given the value of the expression. The result of this entire expression
is also the value of E.

'a = b = 4;' will set a and b to be 4. It can also be written
'a = (b = 4)' to illustrate the order of execution.

1.2.7.2 Arithmetic operators
1. E1 + E2 The expressions are evaluated and the results added to each other.

You can add integers,
oats, strings, arrays and mappings. Strings, arrays and mappings
are simply concatenated - pasted together to the end of the �rst argument.
It's also possible to add integers to strings, they will then be converted to strings and pasted
to the end of the string.

2. E1 - E2 E2 is subtracted from E1.
You can subtract integers,
oats and any type from arrays of the same type. For arrays the
item, if it exists in the array it is subtracted from, is removed from the array. If it doesn't
exist in the array, the array is returned intact.

3. E1 * E2 E1 is multiplied by E2.
This only works on integers and
oats.

4. E1 / E2 E1 is divided by E2.
This only works on integers and
oats.

22 LPC 4.1

5. E1 % E2 The remainder of the expression 'E1 / E2' is returned.
This only works with integers.

'14 % 3' will yield 2 as the remainder. '14 / 3' will be 4, and
4 * 3 + 2 = 14 as a small check.

6. -E Return E with reversed sign.
This only works on integers and
oats.

7. E++, ++E The expression 'E' is incremented by one. If the operator is in front of the
expression, the incrememntation is done before the expression is used, otherwise afterwards.

'a = 3; b = ++a;' will yield the result 'a = 4, b = 4', while
'a = 3; b = a++;' will yield the result 'a = 4, b = 3'.

This only works on integers.
8. E{, {E The expression 'E' is decremented by one. If the operator is in front of the expression,

the decrementation is done before the expression is used, otherwise afterwards.
'a = 3; b = --a;' will yield the result 'a = 2, b = 2', while
'a = 3; b = a--;' will yield the result 'a = 2, b = 3'.

This only works on integers.

1.2.7.3 Boolean operators

Boolean (binary) operators are applicable only to integers with the exception of the & operator
which also works on arrays. Internally an integer is 32 bits long. However, in the following
examples I will only show the ten last bits as the others are 0 and can be ignored with the one
exception of the ~-operator.
1. E1 & E2 E1 and E2.

1011101001 (= 745)
1000100010 & (= 546)

1000100000 (= 544) => 745 & 546 = 544

Used on two arrays, this function will return a new array that holds all elements that are
members of both of the argument arrays.

2. E1 | E2 E1 or E2.
1011101001 (= 745)
1000100010 | (= 546)

1011101011 (= 747) => 745 | 546 = 747

3. E1 ^ E2 E1 xor (exclusive or) E2.
1011101001 (= 745)
1000100010 ^ (= 546)

0011001011 (= 203) => 745 ^ 546 = 203

4. ~E 1-complement of E (invert E).
00000000000000000000001011101001 ~ (= 745)

11111111111111111111110100010110 (= -746) => ~745 = -746

NB! The above example might be hard to understand unless you really know your binary
arithmetic. However, trust me when I say that this is not a typo, it's the way it should
look. Read a book on boolean algebra (the section on two-complement binary arithmetic)
and all will be clear.

Chapter 1: LPC basics 23

5. E1 << E2 E1 is shifted left E2 steps.
5 << 4 => 101(b) << 4 = 1010000(b) = 80

6. E1 >> E2 E1 is shifted right E2 steps.
1054 >> 5 => 10000011110(b) >> 5 = 100000(b) = 32

1.2.7.4 Conditional (logical) operators
1. E1 || E2 Returns true if E1 or E2 evaluates as true. Will not evaluate E2 if E1 is true.
2. E1 && E2 Returns true if both E1 and E2 evaluates as true. Will not evaluate E2 if E1 is

false.
3. !E Returns true if E is false & vice versa.

1.2.7.5 Comparative operators
1. E1 == E2 Returns true if E1 is equal to E2, can be used on all kinds of types, but see the

special section later on arrays and mappings, it works di�erently on them from what you
might think.

2. E1 != E2 Returns true if E1 isn't equal to E2, can be used on all kinds of types, but see
the special section later on arrays and mappings, it works di�erently on them from what
you might think.

3. E1 > E2 Returns true if E1 is greater than E2, can be used on all types except arrays and
mappings.

4. E1 < E2 Returns true if E1 is less than E2, can be used on all types except arrays and
mappings.

5. E1 >= E2 Returns true if E1 is greater or equal to E2, can be used on all types except
arrays and mappings.

6. E1 <= E2 Returns true if E1 is less or equal to E2, can be used on all types except arrays
and mappings.

1.2.8 Pre�x allocation

All of the arithmetic and boolean operator expressions can be written in a shorter way if all you
want to do is compute one variable with any other expression and then store the result in the
variable again.

Say that what you want to do is this a = a + 5;, a much neater way of writing that is a +=
5;. The value of the second expression is added to the �rst and then stored in the �rst which
happens to be a variable.

You write all the others in the same way, i.e. the variable, then the operator directly
followed by = and then the expression.

a >>= 5; // a = a >> 5;
b %= d + 4; // b = b % (d + 4);
c ^= 44 & q; // c = c ^ (44 & q);

1.2.9 Conditionals

Conditional statements are used a lot in LPC, and there is several ways of writing them. A very
important concept is that 0 is considered as false and any other value as true in tests. This
means that empty listings ({}), empty strings "" and empty mappings ([]) also are evaluated
as true since they aren't 0. You have to use special functions to compute their size or determine
content if you want test them, more about that later however.

24 LPC 4.1

1.2.9.1 The if/else statement

The most common conditional statement is naturally the if statement. It's easy to use and can
be combined with an else clause to handle failed tests. It's written like this:

if (expression) statement;
e.g.

if (a == 5)
a -= 4;

If you want to handle the failed match, you add an else statement like this:
if (expression) true-statement else false-statement;
e.g.

if (a == 5)
a -= 4;

else
a += 18;

1.2.9.2 The switch statement

If one variable has to be tested for a lot of di�erent values, the resulting list of `if-else-if-else'
statements soon gets very long and not very easy to read. However, if the type of the value you
are testing is an integer, a
oat or a string you can use a much denser and neater way of coding.
Assume you have the following code you want to write:

if (name == "fatty")
{

nat = "se";
desc = "blimp";

}
else if (name == "plugh")
{

nat = "no";
desc = "warlock";

}
else if (name == "olorin")
{

nat = "de";
desc = "bloodshot";

}
else
{

nat = "x";
desc = "unknown";

}

The better way of writing this is as follows:
switch (name)
{
case "fatty":

nat = "se";
desc = "blimp";
break;

Chapter 1: LPC basics 25

case "plugh":
nat = "no";
desc = "warlock";
break;

case "olorin":
nat = "de";
desc = "bloodshot";
break;

default:
nat = "x";
desc = "unknown";

}

The workings of this statement is very simple really: switch sets up the expression value
within the parenthesis for matching. Then every expression following a case is examined to �nd
a match.

NB! The case expression must be a constant value, it can't be a variable, function call or
other type of expression.

After a match has been found the following statements are executed until a break statement
is found. If no matching value can be found, the default statements are executed instead.

NB!While it's not mandatory to have a default section, it's highly recommended since that
usually means that something has happened that wasn't predicted when writing the program.
If you have written it that way on purpose that's one thing, but if you expect only a certain
range of values and another one turns up it's usually very good to have an error message there
to notify the user that something unexpected happened.

If you forget to put in a 'break' statement the following 'case' expression will be executed.
This might sound like something you don't want, but if in the example above the names `fatty'
and `plugh' both should generate the same result you could write:

case "fatty":
/* FALLTHROUGH */

case "plugh":
< code >
break;

... and save a bit of space. Writing code with switch doesn't make it any quicker to execute,
but a lot easier to read thereby reducing the chance of making mistakes while coding. Remember
to put the /* FALLTHROUGH */ comment there though, or it might be hard to remember later if
it was intentional or an omission of a break statement, particularly if you have some code that's
executed previously to the fall through. A good idea is usually to add an extra linefeed after a
break statement just to give some extra 'breathing space' to improve on legibility.

1.2.9.3 The ?: expression

This is a very condensed way of writing an if/else statement and return a value depending on
how the test turned out. This isn't a statement naturally, it's an expression since it returns a
value, but it was hard to explain earlier before explaining the if/else statement.

Suppose you want to write the following:
if (test_expression)

26 LPC 4.1

var = if_expression;
else

var = else_expression;

You can write that much more condensed in this way:
var = test_expression ? if_expression : else_expression;
e.g.

name = day == 2 ? "tuesday" : "another day";

It can be debated if writing code this way makes you code easier or harder to read. As a
rule it can be argued rather successfully that one expression of that kind does make it clearer,
but that a combination of several only makes it worse. Something like this de�nitely isn't an
improvement:

name = day == 2 ? time == 18 ? "miller time" : "tuesday" : "another day";

1.2.10 Precedence and Order of evalutaion

The table below summarizes the rules for precedence and associativity of all operators, including
those which we have not yet discussed. Operators on the same line have the same precedence,
rows are in order of decreasing precedence, so, for example, *, / and % all have the same
precedence, which is higher than that of + and -.

Note that the precedence of the bitwise logical operators &, ^ and | falls below == and !=.
This implies that bit-testing expressions like

if ((x & MASK) == 0) ...

must be fully parenthesized to give proper results.
1. () [] Left to right
2. ! ~ ++ �� - (type) * & Right to left
3. * / % Left to right
4. + - Left to right
5. << >> Left to right
6. < <= > >= Left to right
7. == != Left to right
8. & Left to right
9. ^ Left to right
10. | Left to right
11. && Left to right
12. || Left to right
13. ?: Right to left
14. = += == etc. Right to left
15. , Left to right

1.2.11 Loop statements

Basically there are two kinds of loop statements which incorporate the use of conditional state-
ments within them, i.e. they can be programmed to execute only until a certain state is reached.

1.2.11.1 The for statement

If you want a simple counter you should use the for statement. The syntax is as follows:

Chapter 1: LPC basics 27

for (initialize_statement; test_expression; end_of_loop_statement)
body_statement;

When �rst entered, the for statement executes the initialize statement part. This part
usually is used to initialize counters or values used during the actual loop. Then the actual loop
starts. Every loop starts by executing the test expression and examining the result. This is a
truth conditional, so any answer not equal to 0 will cause the loop to be run. If the answer
is true the body statement is executed, immediately followed by the end of loop statement.
In the body statement you usually do what you want to have done during the loop, in the
end of loop statement you usually increment or decrement counters as needed.

Throughout the previous section I used the word usually a lot. This is because you don't
have to do it that way, there's no rule forcing you to make use of the statements in the way I
said. However, for now let's stick to the regular way of using the for-statement. Later on I'll
describe more re�ned techniques.

Assume you want to compute the sum of all integers from 7 to 123 and don't know the
formula ((x2^2 + x1^2) / 2). The easiest (if not most e�cient) way of doing that is a loop.

result = 0;
for (count = 7; count < 124; count++)

result += count;

What happens is that �rst of all result is set to 0, then the actual for-statement is entered.
It begins by setting the variable count to 7. Then the loop is entered, beginning by testing if
count (= 7) is less than 124, it is so the value is added to count. Then count is incremented
one step and the loop entered again. This goes on until the count value reaches 124. Since that
isn't less than 124 the loop is ended.

NB! The value of count after the for-statement will be 124 and not 123 that some people
tend to believe. The test expression must evaluate to false in order for the loop to end, and
in this case the value for count then must be 124.

1.2.11.2 The while statement

The while statement is pretty straight-forward, you can guess from the very name what it does.
The statement will perform another statement over and over until a given while expression
returns false. The syntax is simple:

while (<test expression>)

Note carefully that the test expression is checked �rst of all, before running the statement
the �rst time. If it evaluates as false the �rst time, the body is never executed.

a = 0; while (a != 4) { a += 5; a /= 2; }

1.2.12 The break and continue statement

Sometimes during the execution of switch, for or while statements it becomes necessary to
abort execution of the block code, and continue execution outside. To do that you use the break
statement. It simply aborts execution of that block and continues outside it.

while (end_condition < 9999)
{

// If the time() function returns 29449494, abort execution
if (time() == 29449494)

break;

< code >

28 LPC 4.1

}

// Continue here both after a break or when the full loop is done.
< code >

Sometimes you merely want to start over from the top of the loop you are running, in a
for or while statement, that's when you use the continue statement.

// Add all even numbers
sum = 0;
for (i = 0; i < 10000; i++)
{

// Start from the top of the loop if 'i' is an odd number
if (i % 2)

continue;

sum += i;
}

1.2.13 Arrays and Mappings

It's time to dig deeper into the special type array and mapping. Their use might look similar
but in fact they are very di�erent from each other as you will see.

To both of these data types there exists a number of useful (indeed even essential) efuns
that manipulates them and extracts information from them. They will be described in total
later however, only some are mentioned here.

1.2.13.1 How to declare and use arrays

Arrays really aren't arrays in the proper sense of the word. They can better be seen as lists
with �xed order. The di�erence might seem slight, but it makes sense to the computer-science
bu�s :)

Arrays are type-speci�c. This means that an array of a certain type only can contain
variables of that single type. Another restrictions is that all arrays are one-dimensional. You
can't have an array of arrays. However, the mixed type takes care of these limitations. A mixed
variable can act as an array containing any data type, even other arrays. As a rule you should
try to use properly typed arrays to minimize the probabilities of programming mistakes however.

You declare an array like this:
<type> *<array name>;
e.g.

int *my_arr, *your_arr;
float *another_arr;
object *ob_arr;

The initial values of these declared arrays is '0', not an empty array. I repeat: they are
initialized to 0 and not to an empty array. Keep this in mind!

You can allocate and initialize an array like this:
<array> = ({ elem1, elem2, elem3, ..., elemN });
e.g.

my_arr = ({ 1, 383, 5, 391, -4, 6 });

You access members of the array using brackets on the variable name. (Assume val here is
declared to be an integer).

Chapter 1: LPC basics 29

<data variable> = <array>[<index>];
e.g.

val = my_arr[3];

LPC, like C, starts counting from 0, making the index to the fourth value = 3.
To set the value of an existing position to a new value, simply set it using the = operator.

my_arr[3] = 22; // => ({ 1, 383, 5, 22, -4, 6 })
my_arr[3] = 391; // => ({ 1, 383, 5, 391, -4, 6 })

If you want to make a subset of an array you can specify a range of indices within the
brackets.

<array variable> = <array>[<start_range>..<end_range>];
e.g.

your_arr = my_arr[1..3];

... will result in your_arr becoming the new array ({ 383, 5, 391 }); If you give a new
value to an old array, the previous array is lost.

e.g.
my_arr = ({ });

... will result in my_arr holding an empty array. The old array is de-allocated and the
memory previously used is reclaimed by the gamedriver.

If you index outside an array, an error occurs and execution of the object is aborted.
However, range indexing outside the array does not result in an error, the range is then only
constrained to fall within the array.

If you want to create an empty array, initialized to 0 (no matter the type of the array, all
positions will be set to 0 anyway) of a given length, you use the efun allocate().

<array> = allocate(<length>);
e.g.

your_arr = allocate(3); // => your_arr = ({ 0, 0, 0 });

Concatenating (adding) arrays to each other is most easily done with the + operator. Simply
add them as you would numbers. The += operator works �ne as well.

my_arr = ({ 9, 3 }) + ({ 5, 10, 3 }); // => ({ 9, 3, 5, 10, 3 })

Removing elements from an array is easiest done with the -/-= operator, however, be aware
that it is a general operator that will remove all items found that match the item you want to
remove.

my_arr -= ({ 3, 10 }); // => ({ 9, 5 })

If you want to remove a single item in the middle somewhere that might have been repeated,
you have to use the range operator of course.

my_arr = ({ 9, 3, 5, 10, 3 });
my_arr = my_arr[0..0] + my_arr[2..4]; // => ({ 9, 5, 10, 3 })

NB! Beware this di�erence!!!! One is a list, the other an integer!
<array> my_arr[0..0] // = ({ 9 })
<int> my_arr[0] // = 9

30 LPC 4.1

1.2.13.2 How to declare and use Mappings

Mappings are lists of associated values. They are mixed by default, meaning that the index part
of the associated values doesn't have to be of the same type all the time, even though this is
encouraged for the same reason as before in regard to the mixed data type.

Mappings can use any kind of data type both as index and value. The index part of the
mapping in a single mapping must consist of unique values. There can not be two indices of the
same value.

This all sounds pretty complicated, but in reality it's pretty simple to use. However, it will
be a lot easier to understand once we get down to actually seeing it used.

You declare a mapping just like any other variable, so let's just start up with a few decla-
rations for later use:

mapping my_map;
int value;

Allocating and initializing can be done in three di�erent ways:
1: <mapping_var> = ([<index1>:<value1>, <index2>:<value2>, ...]);

2: <mapping_var>[<index>] = value;

3: <mapping_var> = mkmapping(<list of indices>, <list of values>);

The �rst is straight-forward and easy.
1: my_map = (["adam":5, "bertil":8, "cecar":-4]);

The second works so that in case a given mapping pair doesn't exist, it is created when
referenced. If it does exist the value part is replaced.

2: my_map["adam"] = 1; // Creates the pair "adam":1
my_map["bertil"] = 8; // Creates the pair "bertil":8
my_map["adam"] = 5; // Replaces the old value in "adam" with 5.

...

The third requires two arrays, one containing the indices and one containing the values.
How to create arrays was described in the previous chapter.

3: my_map = mkmapping(({ "adam", "bertil", "cecar" }), ({ 5, 8, -4 }));

Unlike arrays there's no order in a mapping. The values are stashed in a way that makes
�nding the values as quick as possible. There are functions that will allow you to get the
component lists (the indices or values) from a mapping but keep in mind that they can be in
any order and are not guaranteed to remain the same from call to call. In practice though, they
only change order when you add or remove an element.

Merging mappings can be done with the +/+= operator just as with mappings.
my_map += (["david":5, "erik":33]);

Removing items in a mapping, however, is a bit trickier. That has to be done by using the
special efun m_delete() (also described later).

my_map = m_delete(my_map, "bertil");
my_map = m_delete(my_map, "david");

As you see the mapping pairs has to be removed one by one using the index as an identi�er
of which pair you want to remove. Another thing you now realize quite clearly is that the indices

Chapter 1: LPC basics 31

in a mapping has to be unique, you can't have two identical 'handles' to di�erent values. The
values however can naturally be identical.

Individual values can be obtained through simple indexing.
value = my_map["cecar"]; // => -4

Indexing a value that doesn't exist will not generate an error, only the value 0. Be very
careful of this since you might indeed have legal values of 0 in the mapping as well. i.e. a value
of 0 might mean that the index has no value part but also that the value indeed is 0.

value = my_map["urk"]; // => 0

1.3 The preprocessor
The preprocessor is not a part of the LPC language proper. It's a special process that is run
before the actual compilation of the program occurs. Basically it can be seen as a very smart
string replacer; Speci�ed strings in the code is replaced by other strings.

All preprocessor directives are given as strings starting with the character `#' on the �rst
column of the line. You can put them anywhere, but as you'll be told later most of them do
belong in the beginning of the code.

NB! I's easy to write very confusing code with the preprocessor. I'm going to speak more
about this in the last chapter, so be warned!

1.3.1 The #include statement

This is by far the most used preprocessor command. It simply tells the preprocessor to replace
that line with the contents of an entire other �le before going any further.

Data you put in include-�les is usually data that won't ever change and that you want
to put into several �les. Instead of having to write those same lines over and over with the
cumulative chance of putting in copying errors as you go, you simply collect that data into one
or more �les and include them into the program �les as necessary.

The syntax is very easy:
#include <standard_file>
#include "special_file"

NB! Note the absence of a ; after the line!
The two di�erent ways you write this depend on where the �le you want to include exists.

There's a number of standard include �les in the game, spread around in a number of di�erent
directories. Rather than having to remember exactly where they are, you can just give the name
of the �le you want to include then.

#include <stdproperties.h>
#include <adverbs.h>

If you want to include �les that aren't part of the standard setup, for example �les of your
own, you have to specify where they are. You do that either relative to the position of the �le
that uses it or by an absolute path.

#include "/d/Genesis/login/login.h"
#include "my_defs.h"
#include "/sys/adverbs.h" // Same as the shorter one above

32 LPC 4.1

When you include standard �les, always use the <>-path notation. The reason isn't only
that it becomes shorter and easier to distinguish but also that if the �les move around your
program will stop working. If you use the <>-notation they will always be found anyway.

Include �les can have any name, but as a rule they are given the '.h' su�x to clearly
distinguish them as include �les.

What has the extension of the �le name really to do with the contents then? Well... actually
nothing at all. However, the convention is to keep code, functions that are to be executed, in
c-�les and de�nitions in h-�les. Usually the mudlib re
ects on this convention and might not
recognize anything but c-�les as code sources.

1.3.2 The #de�ne statement

This is a very powerful macro or substitute preprocessor command that can be abused endlessly.
You are wise if you use it with caution and only for simple tasks.

The syntax is as follows:
'#define' <pattern> <substitute pattern>
#undef <pattern>

Any text in the �le that matches <pattern> will be substituted for <substitute pattern>
before compilation occurs. A #define is valid from the line it is found on until the end of the
�le or an #undef command that removes it.

Although de�nes can be written just as any kind of text, it is the custom (do this!) to use
only capitals when writing them. This is so that they will be easily distinguishable for what
they are since no one (not you either!) ever writes function or variable names with capitals.

Place all de�nes in the beginning of the �le, or the poor chum who next tries to look at
your code will have the devil's own time of locating them. If it's someone you asked for help
(since your badly written code most likely won't work) he probably will tell you to stick the �le
someplace very unhygienic and come back later when you've learned to write properly.

Simple de�nes are for example paths, names and above all constants of any kind that you
don't want to write over and over.

#define MAX_LOGIN 100 /* Max logged on players */
#define LOGIN_OB "/std/login" /* The login object */
#define GREET_TEXT "Welcome!" /* The login message */

Wherever the pattern strings above occur, they will be replaced by whatever is followed by
the pattern until the end of the line. That includes the comments above, but they are removed
anyway later.

tell_object(player, GREET_TEXT + "\n");

A comment on the // form is not a good thing since it doesn't end until the end of the line.
#define GREET_TEXT "Welcome!" // The login message

...will be translated into the previous example as:
tell_object(player, "Welcome!" // The login message + "\n");

...which will have the e�ect of commenting away everything after the //, all the way until
the end of the line.

If a macro extends beyond the end of the line you can terminate the lines with a \ which
signi�es that it continues on the next line. However, you must break the string right after the
\, there must NOT be any spaces or other characters there, just the line break.

Chapter 1: LPC basics 33

#define LONG_DEFINE "beginning of string \
and end of the same"

Function-like de�nes are fairly common and often abused. The only really important rule is
that any argument to the macro must be written so that they are used enclosed in parenthesis.
If you don't do that you can end up with some very strange results.

1: #define MUL_IT(a, b) a * b /* Wrong */
2: #define MUL_IT(a, b) (a * b) /* Not enough */
3: #define MUL_IT(a, b) ((a) * (b)) /* Correct */

What's the big di�erence you may ask? Well, look at this example:
result = MUL_IT(2 + 3, 4 * 5) / 5;

Expanded this becomes:

1: result = 2 + 3 * 4 * 5 / 5; // = 14, Wrong
2: result = (2 + 3 * 4 * 5) / 5 // = 12, Just as wrong
3: result = ((2 + 3) * (4 * 5)) / 5 // = 20, Correct!

WARNING! WARNING! WARNING! WARNING!

Please make sure you make simple use of your de�nes. Don't create complicated function-
like expressions. Doing that is a sure way of ending up in trouble a lot sooner than you might
think. I'm going to come back to this in a later chapter, but for now just please do as I ask
without questioning why.

1.3.3 The #if, #ifdef, #ifndef, #else and #elseif statements

These are all preprocessor directives aimed at selecting certain parts of code and removing other
depending on the state of a preprocessor variable.

The #if statement looks very much like a normal if statement, just written a bit di�erently.
Assume you may have the following de�ne somewhere:
#define CODE_VAR 2

or

#define CODE_VAR 3

Then you can write
#if CODE_VAR == 2

<code that will be kept only if CODE_VAR == 2>
#else

<code that will be kept only if CODE_VAR != 2>
#endif

You don't have to have the #else statement there at all if you don't want to.
It's su�cient to have the following statement to 'de�ne' a preprocessor pattern as existing:
#define CODE_VAR /* This defines the existence of CODE_VAR */

Then you can write like this:
#ifdef CODE_VAR

<code that will be kept only if CODE_VAR is defined>

34 LPC 4.1

#else
<code that will be kept only if CODE_VAR isn't defined>

#endif

or
#ifndef CODE_VAR

<code that will be kept only if CODE_VAR isn't defined>
#else

<code that will be kept only if CODE_VAR is defined>
#endif

Again, the #else part is optional.
The #if/#ifdef/#ifndef preprocessor commands are almost only used to add debug code

that you don't want to have activated all of the time, or code that will work di�erently depending
on other very rarely changing parameters. Since the conditions have to be hard-coded in the �le
and can't change during the course of the use of the object this is something you very rarely do.

Please consider that adding these statements reduces the legibility and thus also the quality
and long-term maintainability of the code. Keeping them to a minimal is recommended.

1.3.4 What not to do with the preprocessor

It is even possible to include c-�les, i.e. to include entire �les full of code. However, doing that
is very bad form. Do not do that EVER! Why? Well, since you include the uncompiled code
into several di�erent objects, you will waste memory and CPU since these identical included
parts has to be compiled and stored separately for each object that uses them. Apart from all
this just reading the code will be a chore better not even contemplated.

Chapter 2: Essential LPC and Mudlib 35

2 Essential LPC and Mudlib

This chapter will teach you what you need to know in order to actually produce code in the
game environment. It will avoid the more complicated and unessential subjects, leaving them
for chapter three. You will be taught a lot more about he mudlib and the workings of the
gamedriver, knowledge necessary to produce working and e�ective code.

2.1 Peeking at things to come
In order to provide you with examples of what I'm trying to teach you, I need to explain a few
functions in advance. They will be repeated in their correct context later, but here's a preview
so that you'll know what I'm doing.

To present things on the screen for the player to read, you use the efun write(). There's
two special characters that's often used to format the text, `tab' and `newline'. They are
written as \t and \n respectively. The `tab' character inserts 8 space characters and `newline'
breaks the line.

void write(string text)
e.g.

write("Hello there!\n");
write("\tThis is an indented string.\n");
write("This is a string\non several lines\n\tpartly\nindented.\n");

/* The result is:

Hello there!

This is an indented string.

This is a string
on several lines

partly
indented.

*/

If you have an array, mapping, or simply a variable of any kind that you want displayed on
the screen for debugging purposes the sfun dump_array() is very handy. You simply give the
variable you want displayed as an argument and the contents (any kind) will be displayed for
you.

void dump_array(mixed data)
e.g.

string *name = ({ "fatty", "fido", "relic" });
dump_array(name);

/* The result is

(Array)
[0] = (string) "fatty"
[1] = (string) "fido"
[2] = (string) "relic"

*/

36 LPC 4.1

2.2 LPC revisited
Let's start by ripping o� the rest of the LPC that was avoided in the �rst chapter. We need
this in order to be able to actually create working objects in the game environment.

2.2.1 Function calls

There are two kinds of function calls, internal and external. The only kind we have discussed
so far is the internal one even though the external call has been displayed a few times.

2.2.1.1 Making object-internal function calls

Making an internal function call is as simple as writing the function name and putting any
arguments within parentheses afterwards. The argument list is simply a list of expressions, or
nothing. (A function call is naturally an expression as well).

<function>(<argument list>);
e.g.

pie = atan(1.0) * 4;

2.2.1.2 Making single object-external function calls

An external call is a call from one object to another. In order to do that you need an object
reference to the object you want to call. We haven't discussed exactly how you acquire an object
reference yet, but assume for the moment that it already is done for you.

mixed <object reference/object path>-><function>(<argument list>);
mixed call_other(<ob ref/ob path>, "<function>", <arg list>);
e.g.

/*
* Assume that I want to call the function 'compute_pie' in the
* object "/d/Mydom/thewiz/math_ob", and that I also have the
* proper object pointer to it stored in the variable 'math_ob'
*/

pie = math_ob->compute_pie(1.0);
pie = "/d/Mydom/thewiz/math_ob"->compute_pie(1.0);
pie = call_other(math_ob, "compute_pie", 1.0);
pie = call_other("/d/Mydom/thewiz/math_ob", "compute_pie", 1.0);

If you make an external call using the object path, the so called master object will be called.
If the object you call hasn't been loaded into memory yet, it will be. If an external call is made
to a function that doesn't exist in the object you call, 0 will be returned without any error
messages. Calls to objects that have bugs in the code will result in an error message and the
execution of the object that made the call is aborted. The call will also fail if the calling object
lacks the proper priviliges to load the target object.

2.2.1.3 Making multiple object-external function calls

You can call several objects at once just as easily as a single one. If you have an array of path
strings or object pointers, or a mapping where the value part are path strings or object pointers
you can call all the referenced objects in one statement. The result will be an array with the
return values if you call using an array and a mapping with the same index values as the calling
mapping if you give a mapping.

(array/mapping) <array/mapping>-><function>(<argument list>);
e.g.

/*
* I want a mapping where the indices are the names of the players

Chapter 2: Essential LPC and Mudlib 37

* in the game, and the values are their hit points.
*/

object *people, *names;
mapping hp_map;

// Get a list of all players.
people = users();

// Get their names.
names = people->query_real_name();

// Make a mapping to call with. Item = name:pointer
hp_map = mkmapping(names, people)

// Replace the pointers with hit point values.
hp_map = hp_map->query_hp();

// All this could also have been done simpler as:
hp_map = mkmapping(users()->query_real_name(), users()->query_hp());

2.2.2 Inheriting object classes

Assume that you want to code an item like a door, for example. Doing that means that you
have to create functionality that allows the opening and closing of a passage between two rooms.
Perhaps you want to be able to lock and unlock the door, and perhaps you want the door to be
transparent. All of this must be taken care of in your code. Furthermore, you have to copy the
same code and make small variations in description and use every time you want to make a new
door.

After a while you'll get rather tired of this, particularly as you'll �nd that other wizards has
created doors of their own that work almost - but not quite - the same way your does, rendering
nifty objects and features useless anywhere but in your domain.

The object oriented way of thinking is that instead of doing things over and over you create
a basic door object that can do all the things you want any door to be able to do. Then you
just inherit this generic door into a specialized door object where you con�gure exactly what it
should be able to do from the list of available options in the parent door.

It is even possible to inherit several di�erent objects where you can combine the functionality
of several objects into one. However, be aware that if the objects you inherit de�ne functions
with the same names, they will indeed clash. Just be aware of what you are doing and why, and
you won't have any problems.

The syntax for inheriting objects is very simple. In the top of the �le you write this:
inherit "<file path>";
e.g.
inherit "/std/door";
inherit "/std/room.c";

NB! This is NOT a preprocessor command, it is a statement, so it does NOT have a # in
front of it, and it is ended with a ;. As you see you may specify that it's a c-�le if you wish,
but that's not necessary.

The child will inherit all functions and all variables that are declared in such a way as to
permit inheriting. If you have a function with the same name as a function in the parent, your

38 LPC 4.1

function will mask the parent one. When the function is called by an external call, your function
will be executed. Internal calls in the parent will still go to the parent function. Often you need
to call the parent function anyway from the child, you do that by adding :: to the internal
function call.

void
my_func()
{

/*
* This function exists in the parent, and I need to
* call it from here.
*/

::my_func(); // Call my_func() in the parent.
}

It is not possible to call a masked function in the parent by an external call, it is only
available from within the object itself.

You can even add up more than one :: instruction on top of another to reach higher levels.
Each :: only means 'back up one inheritance step, and look for the function there. If it's not
there, look further up'. So, ::::::func() simply means 'back up three inheritance steps and
look for func() there, if not found, look even further up until you �nd it'.

If you have managed to confuse matters by having a function with the same name as an
efun, the compiler needs a bit of help in knowing which function you actually mean. Now, it
isn't exactly the brightest thing you can do to put yourself in this situation, but you will even
�nd examples of it in the mudlib (in /std/player/savevars_sec.c to be speci�c, and I even
cough seem to remember that it was I who wrote that part once upon a time), so I guess even
the sun has spots... Anyway, to solve the problem, simply precede any such efun call with the
instruction efun::, and the compiler will know what you mean.

void
deep_inventory(object ob)
{

write("Dumping inventory of object '" + file_name(ob) + "'");
dump_array(efun::deep_inventory(ob)); /* Call to real efun */

}

int
my_fun(string arg)
{

object ob;

if (objectp((ob = find_object(arg))))
deep_inventory(ob); /* Call to local version above */

}

2.2.3 Masking functions in runtime, part 1

There's a functionality called shadowing available in LPC. Purists tend to use the word 'abomi-
nation' and scream for its obliteration, since it goes against most of what's taught about proper
control
ow and object purity. For gaming purposes it's rather useful, although it can cause a
host of problems (particularly when it comes to security). Use it with caution!

It's possible to make an object shadow another object. What happens then is that the
functions in the shadow object that also exist in the shadowed object mask the original. Calls

Chapter 2: Essential LPC and Mudlib 39

to the shadowed functions will go to the shadow instead. The shadow will for all practical
appearances 'become' the object it shadows. As you can see this is done in runtime, and not
during compilation.

This is all I will say on this subject right now. How to create shadows and use them will
be handled in detail later. For now this is what you need to know.

2.2.4 Type identi�cation

Due to the fact that all variables are initialized to 0, and that many functions return 0 when
failing, it's desirable to be able to determine what kind of value type you actually have received.
Also, if you use the mixed type it's virtually essential to be able to test what the variable contains
at times. For this purpose there's a special test function for each type that will return 1 (true)
if the tested value is of the asked for type, and 0 if not.

�int intp(mixed)
Test if given value is an integer

�int
oatp(mixed)
Test if given value is a
oat

�functionp(mixed)
Test if given value is a function pointer

�int stringp(mixed)
Test if given value is a string

�int objectp(mixed)
Test if given value is an object pointer

�int mappingp(mixed)
Test if given value is a mapping

�int pointerp(mixed)
Test if given value is an array

NB! These functions test the type of the value, NOT the value itself in the sense of truth
functionality. In other words intp(0) will always evaluate as true, as will mappingp(([])).

2.2.5 Type quali�ers

The very types you assign variables and function can have quali�ers changing the way they work.
It's very important to keep them in mind and use the proper quali�er at the proper time. Most
work di�erently when applied to variables rather than functions, so a bit of confusion about how
they work usually is quite common among the programmers. Try to get this straight now and
you'll have no problems later

2.2.5.1 The static variable quali�er

This is a problematic quali�er in the respect that it works di�erently even for variables depending
on where they are! Global variables, to begin with, are (as you know) variables that are de�ned
in the top of the �le outside any function. These variables are available in all functions i.e. their
scope is object-wide, not just limited to one function.

It is possible to save all global variables in an object with a special efun (described later).
However, if the global variable is declared as static, it is not saved along with the rest.

static string TempName; // A non-saved global var.

40 LPC 4.1

2.2.5.2 The static function quali�er

A function that is declared static can not be called using external calls, only internal. This
makes the function 'invisible' and inaccessible for other objects.

2.2.5.3 The private function/variable quali�er

A variable or function that has been declared as private will not be inherited down to another
object. They can only be accessed within the object that de�nes it.

2.2.5.4 The nomask function/variable quali�er

Functions and variables that are declared as nomask can not be masked in any way, neither by
shadowing nor inheriting. If you try you will be given an error message.

2.2.5.5 The public function/variable quali�er

This is the default quali�er for all functions. It means there is no limits other than those which
the language imposes on accessing, saving and masking.

2.2.5.6 The varargs function quali�er

Sometimes you want a function to be able to receive a variable amount of arguments. There's
two ways of doing this and it can be discussed if it's correct to put both explanations in this
chapter, but it's sort of logical to do so and not too hard to �nd.

A function that is de�ned varargs will be able to receive a variable amount of arguments.
The variables that aren't speci�ed at the call will be set to 0.

varargs void
myfun(int a, string str, float c);
{
}

The call myfun(1); will set a to 1, str and c to 0. Make sure you test the potentially
unused variables before you try to use them so that they do contain a value you can use.

There's another way as well. You can specify default values to the variables that you're
uncertain about. Then you don't have to declare the function varargs and you will have proper
default values in the unused argument variables as well.

void
myfun(int a, string str = "pelle", float c = 3.0);
{
}

This function must be called with at least one argument, the �rst, as it wasn't given a
default value. The call myfun(1, "apa"); will set a to 1, str to "apa" and c to 3.0.

2.2.6 The function data type, part 2

There's one data type that I more or less ignored earlier, and that's the function type. Just as
there's a type for objects, functions have a type as well. You can have function variables and
call assigned functions through those variables. Mostly the function type is used in conjunction
with other functions that use them as parameters.

You declare a function type just as any variable:
<data type> <variable name>, <another variable>, ..., <last variable>;
e.g.

function my_func, *func_array;

Chapter 2: Essential LPC and Mudlib 41

Assigning actual function references to them, however, is a bit tricker. You can assign any
kind of function to a function variable; efun, sfun or lfun is just the same. You can even assign
external function references.

Assigning a function reference requires that the function already is de�ned, either itself or
by a function prototype in the header. Let's assume for now that you're only interested in the
simple reference to the function.

<function variable> = <function name>;
<function variable> = &<function name>();
e.g.

my_func = allocate;
my_func = &allocate();

Usage of the new function reference is done just as with the ordinary function call.
int *i_arr;

i_arr = allocate(5); // Is the same as...
i_arr = my_func(5); // ... using the function assignment above.

This will be enough for now. Later I'll explain how to create partial function applications,
internal and external function declarations and how to use them in complex function combina-
tions.

2.2.7 switch/case part 2

The LPC switch statement is very intelligent, it can also use ranges in integers:
public void
wheel_of_fortune()
{

int i;

i = random(10); // Get a random number 0 - 9
// Strictly speaking, this local variable isn't
// necessary, it's just there to demonstrate the
// use and make things clearer. I could have
// switched on 'random(10)' directly instead if
// I had wanted to.

switch (i)
{
case 0..4:

write("Try again, sucker!\n");
break;

case 5..6:
write("Congrats, third prize!\n");
break;

case 7..8:
write("Yes! Second prize!\n");
break;

case 9:

42 LPC 4.1

write("WOOOOPS! You did it!\n");
break;

default:
write("Someone has tinkered with the wheel... Call 911!\n");
break;

}
}

2.2.8 catch/throw: Error handling in runtime

It happens now and then that you need to make function calls you know might result in a
runtime error. For example you might try to clone an object (described later) or read a �le. If
the �les aren't there or your privileges are wrong you will get a runtime error and execution will
stop. In these circumstances it is desirable to be able to intercept the error and either display
some kind of message or perform other actions instead. The special LPC function operator
catch() will do this for you. It returns 1 (true) if an error occurs during evaluation of the given
function and 0 (false) otherwise.

int catch(function)
e.g.

if (catch(tail("/d/Relic/fatty/hidden_donut_map")))
{

write("Sorry, not possible to read that file.\n");
return;

}

It's also possible to cause error interrupts. This is particularly useful when you want to
notify the user of an unplanned for event that occurred during execution. Typically you want
to do this in the 'default' case of a switch statement, unless (naturally) you use default as a
sort of catch-it-all position. In any case throw() will generate a runtime error with the message
you specify. A catch() statement issued prior to calling the function that uses throw() will
naturally intercept the error as usual.

throw(mixed info)
e.g.

if (test < 5)
throw("The variable 'test' is less than 5\n");

2.2.9 Array & Mapping references

In comp sci terms, arrays and mappings are used as reference by pointer and the other types as
reference by value. This means that arrays and mappings, unlike other variables, aren't copied
every time they are moved around. Instead, what is moved is a reference to the original array
or mapping. What does this mean then?

Well... simply this:
object *arr, *copy_arr;

arr = ({ 1, 2, 3, 4 }); // An array

copy_arr = arr; // Assume (wrongly) that a copy_arr becomes
// a copy of arr.

// Change the first value (1) into 5.

Chapter 2: Essential LPC and Mudlib 43

copy_arr[0] = 5;

... Now... this far down the code it's logical to assume that the �rst value of copy_arr
is 5 while the �rst value or arr is 1. That's not so however, because what got copied into
copy_arr was not the array itself, but a reference to the same array as arr. This means that
your operation later where you changed an element, changed that element in the original array
which both variables refer to. copy_arr and arr will both seem to have changed, while in fact
it was only the original array that both referred to that changed.

Exactly the same thing will happen if you use mappings since they work the same way in
this respect.

So... how do you get around this then? I mean... most times you really want to work on
a copy and not the original array or mapping. The solution is very simple actually. You just
make sure that the copy is created from another array or mapping instead.

_ This is just an empty array
/

copy_arr = ({ }) + arr;
_ This is the one we want to make unique

In this example copy_arr becomes the sum of the empty array and the arr array created
as an entirely new array. This leaves the original unchanged, just as we wanted. You can do
exactly the same thing with mappings. It doesn't matter if you add the empty array or mapping
�rst or last, just as long as you do it.

2.3 LPC/Mudlib interafce
There's a lot of stu� you want to do, like handling strings and saving data to �les, that's not
exactly LPC. It's part of the 'standard function package' that most programming languages
sport. This chapter will teach you the basics of how to do all the things you need in order to
create LPC objects.

Objects in the game share a certain set of common properties, the ones you always can rely
on to be there for any kind of object are these:

�creator The object is created by someone. The identity of this creator is set depending on
the �le-system location of the source code. If the object resides in the directory of a
domain-active wizard, the creator is said to be the name of that wizard. Otherwise
the domain name is used. For mudlib objects the creator usually is root for admin
objects and backbone for the rest.

�uid/euid The uid (User ID) of an object de�nes the highest possible privilege level of an
object. The uid itself is is only used to a�ect the euid (E�ective User ID) of the
same or another object. The euid is later checked in situations where the privilege
of the object needs to be examined i.e. �le access (reading/writing/removing) and
object creation.

�living In order for an object to be able to receive command-lists or issue commands it has
to be living.

2.3.1 De�nition of standard and library objects

As I have explained earlier the gamedriver really knows very little about the actual game,
actually as little as possible. Instead the mudlib is entrusted to take care of all that. So, what
we have done is to try to work out what basic functionality is needed, things like how objects
should interact with players, moving, light-level descriptions etc. Then we have created basic
object classes that implement these functionalities in actual code.

44 LPC 4.1

A domain wizard doesn't have spend endless hours trying to �gure out how to make an
object work in relation to others in respect to basic functionality. Instead he just makes his
object inherit the standard object suitable for the task he wants to code. Then he just adds the
bits and pieces of code to the object that is necessary to make it unique and do the things that
are special for that particular object.

A consequence of this naturally is that all objects in the game rely 100% on the fact that
a certain type of object (room, monster, gadget) has a certain set of common functionality.
They simply have to have that in order to be able to interact in the agreed way, if they didn't,
if people had di�erent ways of solving the same problem, the objects would only work with a
certain wizard's area and never outside of it. It would then not be possible use a sword all over
the game, it wouldn't even be possible to move it around from place to place. Naturally this
means that we enforce this unity, and therefore it is impossible to create (and use) objects that
don't inherit these special objects. Sure, as you can see for yourself later, it is possible to create
a sword that doesn't make use of the standard weapon object, but it is perfectly impossible to
wield it...

The standard objects provide certain basic functionality that must exist in all objects and
they also make a bit of sanity checking on values of certain variables, but the latter really is a
very minor functionality.

There are standard objects for a lot of purposes, the most important one is `/std/object.c'
though.

2.3.1.1 The base object class, /std/object.c

This is the all purpose object class. ALL objects in the game must inherit this object somewhere
along the line if they are to be 'physically' present somewhere. Using any kind of standard object
usually insures that this one is inherited as well, since they already make use of it.

The standard object de�nes the following conventions:

�inventory An object can contain other objects. In reality that is nothing but a list of objects
that are said to be held inside the object owning the list. However, it is very easy
to visualize this as the inside of a bag, inside a room, inside a box etc.

�environment
The object that surrounds the object that is being used as reference. In other
words the reference object exists in the inventory of the environment object. An
object can have a multitude of objects in its own inventory, but it can only have
one environment object. All objects start out with no environment.

�command set
A list of catch-phrases linked to functions that the object makes available to other
so called living objects in the game either in the environment or inventory of itself.
These living objects can issue such a catch-phrase and the command-giving object
will execute the linked function.

�properties
Properties are a pure mudlib convenience. They really is nothing but a mapping
with certain reserved names indexed to object variables that a�ect certain generally
accessible states. Typical properties are weight, value and light-level, but also more
abstract concepts like the ability to be dropped, taken or sold. The applicable set
of properties vary from object type to object type.
Wizards may add their own properties if they wish, but they must then be careful
to de�ne names that won't mistakenly be used by other wizards for other purposes,
or advertise the names so that people won't use them by mistake.

Chapter 2: Essential LPC and Mudlib 45

�light An object has a certain light level. Usually it's just as any kind of object - not
a�ecting the environment at all, but it's possible to have both light- and darkness-
sources.

�weight/volume
These values determine how much an object weight and how much room they take.
For 'hollow' objects like bags it also determines how much they can hold.

�visibility Some objects may be easier to �nd than others.
�names and descriptions

What the object is called and how a player will see it in the game.

2.3.1.2 Standard object classes

There exists a number of standard object classes for use in various situations. You will need
to read the separate documentation on each and every one of them in order to fully learn to
use them. However, this summary of the available classes will at least point you in the correct
direction as you go.

As stated earlier you have to inherit most of these objects in order for your derived objects
to work at all. However, it is possible to create new versions of some of them on your own. Again,
I must emphasize that this is not a good idea since you then deviate from the common base of
object functionality that is in use in the game. Problems that occur because of this actually are
tricky to catch and track down since it isn't the �rst thing you suspect that someone has done.

`/std/armour.c'
Armour of any kind

`/std/board.c'
Bulletin boards

`/std/book.c'
A book with pages you can open, turn and read

`/std/coins.c'
The base of all kinds of money

`/std/container.c'
Any object that can contain another

`/std/corpse.c'
Corpse of dead monsters/players/npcs

`/std/creature.c'
Simple living creatures, basically a mobile that can �ght

`/std/domain_link.c'
Use this as a base to preload things in domains

`/std/door.c'
A door that connects two rooms

`/std/drink.c'
Any type of drink

`/std/food.c'
Any type of food

`/std/guild (directory)'
Guild related objects (the guild and the shadows)

46 LPC 4.1

`/std/heap.c'
Any kind of object that can be put in heaps

`/std/herb.c'
Herbs

`/std/key.c'
Keys for doors

`/std/leftover.c'
Remains from decayed corpses

`/std/living.c'
Living objects

`/std/mobile.c'
Mobile living objects

`/std/monster.c'
Monsters of any kind

`/std/npc.c'
A creature which can use 'tools', i.e. weapons.

`/std/object.c'
The base object class

`/std/poison_effect.c'
Handle e�ects in poison of any kind

`/std/potion.c'
Potions

`/std/receptacle.c'
Any kind of closable/lockable container

`/std/resistance.c'
Handle resistance against various kinds of things

`/std/room.c'
Any kind of room

`/std/rope.c'
Rope objects

`/std/scroll.c'
Scrolls

`/std/shadow.c'
Used as base when creating shadows

`/std/spells.c'
Spell objects, tomes etc

`/std/torch.c'
Torches/lamps etc

`/std/weapon.c'
Any kind of weapons

Chapter 2: Essential LPC and Mudlib 47

2.3.1.3 Standard library objects

These objects are more of the type of 'helper' classes. They don't qualify as objects in their own
right, but they provide neat functionality for what they do.

`/lib/area_handler.c'
Manage big areas with simple layout. The object generates an area based on simple
map along with a �le containing descriptions for a reduced set of room types.

`/lib/bank.c'
Provides money changing support. Inherits /lib/trade for the basic money moving
functionality.

`/lib/cache.c'
Cache for frequent �le access. If you create an object that re-reads information from
�le frequently, this object will cut down on the �le-access calls substantially.

`/lib/guild_support.c'
Support functions for guilds

`/lib/herb_support.c'
Support functions for herbs

`/lib/more.c'
More (�le browsing) functionality

`/lib/pub.c'
Bar/pub functionality

`/lib/shop.c'
Shops of all kinds

`/lib/skill_raise.c'
Training of skills

`/lib/store_support.c'
Support functions for stores

`/lib/time.c'
Time handling routines

`/lib/trade.c'
Trade related support functionality

2.3.2 How to obtain object references

Objects, as previously described, comes in two kinds - master objects and clones. In general you
tend to use cloned objects. At least for objects that are being 'handled' in the game, objects
that you can move about, touch, examine etc, or any object that exist in more than one copy.
Making exclusive use of only the master object is usually only done for rooms, souls or daemon
objects of various kinds.

The master object should not be moved inside an inventory. It is technically possible to
do so, but it'll generate a number of errors in various situations, so please just don't try it, ok?
Master objects can have inventories of their own though, and that feature is used in rooms.
Rooms, generally speaking, should never be cloned. The same goes for command souls and
certain central daemon objects. For example, if you implement a bank with several o�ces, you
will need some kind of central service which keeps track of customers and accounts for you.
That central object should probably never be cloned, but instead exist as a non-clonable loaded
object.

48 LPC 4.1

Naturally any object in the game must have a master object. An object is loaded into
memory and the master object created when a function (any function call, even to a non-
existing function) is called in it. Cloning it just makes identical copies of it. If you destroy the
master object, the gamedriver will have to load it again later before making any new clones.
Naturally this is what you do every time you have made changes to the object that you want
to become active. Destroying the master object won't change the already existing clones, of
course. You'll have to replace them separately.

NB! Remember that any object you have cloned and distributed in the game will continue
to exist unchanged even though you destroy the master object. New objects that you clone
from the updated master object will have the new functionality, but the old ones will remain
the way they were previously. This means that if you have discovered a real bummer of a bug in
some kind of object that you have distributed to a lot of players, you'd need to create another
specialized object to �nd them and replace them with the new version to actually get the bug
removed from the game.

The mudlib in fact works so that loading an object is made by calling a non-existing function
in the object and updating it simply destroys the master object.

How to get the object references then? Well, that depends on the situation. An object
reference is either an object pointer or a string path, referring to the object source in the mud
�lesystem. Obtaining them is di�erent depending on the situation however. Let's go through
them all.

2.3.2.1 Object references relative to the current object

An object can always get the object reference to itself. Use the efun this_object():
object this_object()
e.g.

object ob;

ob = this_object();

In order to �nd out which object called the currently running function in an object using
an external call, you can use the efun 'previous object()':

object previous_object(void|int step)
e.g.

object p_ob, pp_ob;

p_ob = previous_object(); // The object calling this function.
pp_ob = previous_object(-2); // The object calling the object

// calling this function.

If you supply no argument or -1, the function will return the immediately previous object
that called. Decrementing the argument further will return even more previous callers, i.e
previous_object(-4) returns the object that called the object that called the object that
called your object. If indeed the chain of calling objects was that long. When you exceed the
length of the calling chain beyond the �rst object that made a call, the function will return 0.

As I hope you noticed, this call only checks for external calls, not internal. There is a
corresponding efun that works just the same but for any type of call (internal or external) that
has been made:

object calling_object(void|int step)

The usage is the same however.

Chapter 2: Essential LPC and Mudlib 49

So... how do you know if the object reference you just received is a valid object or not (i.e.
0 or something else)? Well, use the nice efun objectp() as described earlier. It returns 1 if the
argument is a valid object pointer and 0 otherwise.

int objectp(mixed ob)
e.g.

if (objectp(calling_object(-2)))
write("Yes, an ob calling an ob calling this object exists!\n");

else
write("No such luck.\n");

2.3.2.2 Creating objects

First of all you must make sure that the object that tries to create a new object has the privileges
required to do so. The rules are pretty simple actually: An object with a valid euid can clone
any other object. A valid euid is anything except 0. The euid 0 is the default uid and euid on
creation of an object, and it's used as meaning 'no privileges at all'.

However, usually the choice of euids you can set is pretty limited. If you're a wiz it's usually
limited to your own name. A Lord can set the euid in an object to be his, or any of the wizard's
in the domain (unless one of the wizards is an Archwiz, then that one is excempt as well). And
naturally objects with 'root' uid can set any euid they like.

So... the uid of the object determines what choice of euids you have. You set the uid to the
default value by adding this sfun call:

void setuid()
e.g.

setuid();

Simple eh? Doing that sets the uid to the value determined by the location of the object
source-�le in the mud �lesystem. The rules for this is the same as for the creator value described
earlier. You can get the creator value of an object with the sfun creator(), it simply returns
the string setuid() would use for that object.

string creator(mixed reference)
e.g.

string my_creator;

my_creator = creator(this_object());

To get the actual uid value that is currently used, you the sfun getuid()

string getuid()
e.g.

string curr_uid;

curr_uid = getuid();

So.. the uid is now set to the highest privilege giver. The euid however, is still 0. Since the
euid determines the actual privileges used in an object this means that the object still has no
privileges at all.

To set the euid you use the sfun seteuid(), the argument given will be set as euid if allowed
(it's tested). The function returns 0 on failure and 1 on success. If you don't send any argument,
the euid is set to 0, 'turning it o�' so to speak.

int seteuid(void|string priv_giver)

50 LPC 4.1

e.g.
if (seteuid("mrpr"))

write("Yes! I'm the ruler of the UNIVERSE!\n");
else

write("Awwwww....\n");

Naturally there's a corresponding sfun to return the current euid:
string geteuid()
e.g.

write("The current euid = " + geteuid() + "\n");

The sfuns setuid(), getuid(), seteuid() and geteuid() are all using the efuns set_
auth() and get_auth(). They are used to manipulate a special authority variable inside the
object in the gamedriver. The gamedriver will call a validating function in the master object
(security) if you try to use set_auth() to make sure that you are privileged to do so. The
reason is that it's possible to store any kind of string in the authority variable, and the way we
use it is merely a convention, something that we have decided is the best way of solving security.

When you try to perform a privileged operation, like writing to a �le or cloning an object
the gamedriver calls other special functions in the master object to make sure you have the right
privileges. They all depend on that the information stored in the authority variable is formatted
in the special way we want for it to work properly. Due to this fact you are not allowed to use
set_auth() in any other way than already is allowed by setuid() and seteuid(), so there's
really no use in doing that at all. query_auth() is not protected but you won't �nd much use
for that information anyway.

The information stored in the authority variable is simply the uid and euid separated by a
colon.

Now that we know how to give privileges to an object, let's �nd out how to make it clone
others! The efun used is called clone_object(), it loads and creates an object from a source
�le. If the cloning should fail, due to programming mistakes for example, an error message will
be given and execution of the current object aborted.

object clone_object(string obref)
e.g.

object magic_ring;

// Set the object privileges so that it's possible to clone
setuid();
seteuid(getuid());

// Actually clone the object
magic_ring = clone_object("/w/Wizard/magic_ring");

Naturally you only have to set the uid/euid of an object ONCE in an object and not every
time you want to perform a privileged operation. The most common procedure is to put these
uid/euid setting calls in a function that is called when the object is �rst created, but more about
that later.

Now... when arrays or mappings were created they existed as long as any variable used
them. If the variable was set to 0, the data they contained was scrapped as well. Is this true for
objects as well? NO! It's not. The object will remain in the game as long as the gamedriver is
running, unless you explicitly destroy it.

Chapter 2: Essential LPC and Mudlib 51

2.3.2.3 Finding references relative to another object

As stated object references either are strings or object pointers. Turning an object reference to
a string is done with the efun file_name():

string file_name(object ob)
e.g.

write("This object is: " + file_name(this_object()) + "\n");

The string that pops out of file_name is the string representation of the object refer-
ence pointer. It's given as <file path>#<object number>, for example "/w/Wizard/magic_
potion#2321". This string is a valid object reference to that speci�c object as well.

To turn a string object reference into an object pointer reference you use the efun find_
object().

object find_object(string obref)
e.g.

object the_ob;

// The master object
the_ob = find_object("/w/Wizard/magic_potion");

// The specific clone
the_ob = find_object("/w/Wizard/magic_potion#2321");

If the function doesn't �nd the object (the path might be wrong, the speci�ed clone might
not exist or the object might not be loaded), it returns 0.

Sometimes it's useful to �nd all the clones of a speci�c object. The efun for that is object_
clones(). It will return an array holding all clones of the master object the object reference
indicates. This means that you can give either a master object or an object clone pointer as
argument. However, be a bit careful here. If the object was updated and your provide the
master object as argument, you will get a list of all the 'new' clones. If you give an old object
as argument you will get a list of all contemporary objects, the objects of that 'generation'. If
no clones can be found, an empty array is returned.

object *object_clones(object obref)
e.g.

object *ob_list;

ob_list = object_clones(find_object("/w/Wizard/magic_potion"));

Some objects are living. In the game this denotes the fact that the objects can be attacked
and (perhaps) killed and that they want to receive command updates from objects that turn up
either in the environment or the inventory of the object itself. Living objects have the option
of registering themselves in a special list in the gamedriver. This is done in order to make them
easier to �nd. The special efun find_living() looks for a named living object in the internal
list of names.

object *find_living(string name, void|int 1)
e.g.

object balrog_ob, *bals;

// Search for the 'balrog' monster in the game.
balrog_ob = find_living("balrog");

52 LPC 4.1

If you give '1' as second argument, the efun will return a list of all objects with that name
found instead.

bals = find_living("balrog", 1);

If no living object with the given name can be found, 0 is returned.
In order for the name to become part of the list of names, the object itself must add the

name to the central list with the efun set_living_name().
void set_living_name(string name)
e.g.

// This is part of the 'create()' function of the balrog above.
set_living_name("balrog");

Remember that if you have several objects with the same name, find_living() in the
single object mode will randomly return one of them.

For your own sake you ought to reserve the use of npc names with the special 'banish'
command in the game, so that no players turn up with the same name as you npc. If that
happens things are very likely to get confused...

In order to get the master object reference of an object you have a pointer to, you can
convert it to a string, then strip o� the object specifying bits. However, there's already a macro
doing that in the standard package `/sys/macros.h'. Simply add the line #include <macros.h>
to the top of your �le and use the macro MASTER_OB.

string MASTER_OB(object ob)
e.g.

string master;

// Assume that /sys/macros.h is included in this file.
master = MASTER_OB(find_living("balrog"));

As stated, this returns the string reference to the master object, if you particularly need
the object reference just get it with find_object() given the just established object path as
argument.

A clone is easiest distinguished from the master object by comparing the object reference
strings. The macro IS_CLONE does that for you, also available in `/sys/macros.h'. The macro
works on this_object() and takes no argument

int IS_CLONE
e.g.

if (IS_CLONE)
write("I am a clone!\n");

2.3.2.4 Object references to interactive objects

If you are looking for a particular player, you could look for him with find_living() and then
just make sure it's an interactive object. However, it's a lot quicker to use the efun find_
player() that works just the same with the exception that there can only be one player with a
given name; if he's in the game you will get the object reference to him and no other.

object *find_player(string name)
e.g.

object fat_one;

fat_one = find_player("fatty");

Chapter 2: Essential LPC and Mudlib 53

if (objectp(fat_one))
fat_one->catch_msg("Hail thee, bloated one!\n");

else
write("Nope, no such luck.\n");

Very often you want to know which player issued the command that led to the execution
of a speci�c function. The efun this_interactive() will return the object reference to that
player. If the execution chain was started by an independent non-player object, 0 is returned.

However, more often you're not interested in who actually started the chain, but rather
who the object is supposed to direct its attention at. That object is returned by the efun this_
player(). In other words, while the object might be expected to turn its attentions (command
lists, output messages, object e�ects etc) to the object given by this_player(), it might be
another player given by this_interactive() that actually started the execution chain in the
object. The value of this_interactive() can never be manipulated by objects in the game,
this_player() on the other hand can be set at will. More about that later.

object this_player();
object this_interactive();
e.g.

object tp, ti;

tp = this_player();
ti = this_interactive();

if (objectp(ti))
{

if (ti != tp)
{

tp->catch_msg("Zapppp!\n");
ti->catch_msg("Zapped him!\n");

}
else

ti->catch_msg("Fzzzzz...\n");
}

2.3.2.5 Destroying objects

Sooner or later you will want to get rid of an object. The efun you use is destruct(). However,
the gamedriver only allows the object that issued the destruct() efun to actually be removed.
This means that every object need to have a function that you can call from another object in
order to be able to destroy it from without. If the object doesn't contain the destruct() efun,
it will remain for the duration of the game.

Well, actually there exists a backdoor that allows you to destroy any object, but it's a
command you have to issue manually. You can't use it in a program.

However, the standard object base - which is being discussed in more detail later - does
de�ne a function called remove_object() that you can call to destroy the object. Since all
objects actually in the game MUST inherit the standard object you can rely on having that
function there. It's possible to mask it, thereby blocking that function. However, masking
remove_object() is tantamount to sabotage so please don't even think about it. The reason
the function is maskable is so that you should be able to add last-second cleanup code, not so
that you should be able to render the object indestructible.

54 LPC 4.1

void remove_object()
e.g.

void
remove_balrog(string bal_name)
{

object bal;

bal = find_living(bal_name);
if (objectp(bal))

bal->remove_object();
}

If you use the destruct() efun directly or call remove_object() in the object itself, make
DOUBLE sure that no code is being executed afterwards. You see, execution isn't aborted on
completion of the destruction, the object is just ear-marked as destructed, actual removal is
done when execution of it is �nished. This means that function calls or commands issued after
destruction might give rise to runtime errors in other objects.

void destruct()
e.g.

void
destruct_me()
{

write("Goodbye, cruel world!\n");
destruct();

}

When an object is destructed, ALL object pointers (not string references) in the game
pointing at the destructed object are set to 0. Due to this fact it's usually sensible to make sure
that an old object reference still is valid before doing anything with it. You never know, it just
might have been removed since you obtained it.

if an object contains other objects in its inventory when it is destructed, those objects will
be destructed with it. The exception is interactive objects, players. If you update a room you
are e�ectively destructing it, if it has players in it they will be moved to their respective starting
locations. If the room is the start location or if there is a problem with moving them (buggy
start location or impossible to move them) those players will be destructed as well. In any
circumstances you should always be able to rely on an object being destructed when ordered to.

The one time there's problems with this is when the function remove_object() has been
overridden and has a bug in it. That might just abort the process and cause problems.

2.3.3 Object-inherent command handling

By now you know that nothing ever is really simple in this game. To confuse the issue when
dealing with commands we actually have two di�erent types of commands. One kind is the
one that we will talk about here, commands that are de�ned by objects that you can touch or
examine. The other kind is so called 'soul' commands. The soul commands is a pure mudlib
convenience though. They are described later in chapter three.

Object-added commands work like this: Upon entering an object, such as a room, a special
lfun called init() is called in the room and in all other objects in the inventory of the room.
The init() function is actually an ordinary function that you could use for any purpose, but
the intended purpose is to have the command-adding efun add_action() there. In other words,
when you enter an object of any kind, the commands of that object as well as those of the other
object in the same inventory are added to your set of commands.

Chapter 2: Essential LPC and Mudlib 55

The add_action command ties an action word to a function in the object. Upon typing
the special word as the �rst word on the line, the function gets called with any other words
you might have typed as arguments. The third argument can be given as '1' if you want the
gamedriver to trigger on just a part of the word. For example if you have the action word
'examine' and want to allow 'exa' or 'ex' as well.

add_action(function func, string action, void|int 1)
e.g.

init()
{

/*
* The functions 'do_bow()' and 'leave_game()' are defined
* somewhere in this object. However, if it's done later than
* this function, they must exist as prototypes in the header.
*/
add_action(do_bow, "bow"); // Better get used to seeing
add_action(&leave_game(), "quit"); // different kinds of function

// reference declarations.
}

Is this true for any kind of object then? Will any object receive this set of commands?
No. Just living objects. An object is made living by the efun enable_commands() and dead,
or inert, with the efun disable_commands() Note carefully that living in the gamedriver only
means being able to receive and execute commands, in the mudlib it means a bit more.

Use these efuns whenever you want to switch on or o� the command handling capabilities.
However, remember that if the object already is moved into a room when you turn on living
status, it will have no command lists. You will have to move it out/in to the room again in
order for it to pick up all actions.

You can check if an object is living or not with the efun living().
enable_commands()
disable_commands()
int living(object ob)
e.g.

public void
toggle_living_status()
{

if (living(this_object()))
disable_commands();

else
enable_commands();

}

Actions can only be added and maintained by objects that exist in the inventory or en-
vironment of an object. If the object is moved from the action-de�ning object's presence, the
action is removed as well.

As you now understand, the gamedriver expects the function init() to be de�ned in any
object that wishes to add actions to living objects. Please be careful how you use the function
though. If you for example use the init() function to test if an object belongs there or not,
and then move it out if it doesn't, you'll likely get into trouble. The reason is that if you add
actions after having moved it, you will in fact be adding actions to a non-present object. The
gamedriver will notice this and you will have an error. I would like to advice you not to use the

56 LPC 4.1

init() function for any other purpose than adding actions. It's allowed to test the object that
calls the init() function to determine if you should add actions to it or not (if you limit access
to some actions), but avoid any other kind of code.

I'm sorry to say that the mudlib itself doesn't always conform to this rule, there's objects
here and there that cheat. However, there's no reason why you should code things badly just
because we did. :)

In most objects that inherit standard base objects it's necessary to call the parent init()
as well, since otherwise you'll override it and thereby miss lots of important actions. Just put
the statement ::init(); �rst in your init, before your add_action() statements, and all will
be well.

To execute a command in a living object you use the efun command().
int command(string cmd)
e.g.

command("sneeze");
command("wield sword in left hand");

If you're doing this for mortals (which most often is the case) you're wise to use this
construction instead. The reason is that the dollar sign will evade the internal alias mechanism
so that it isn't fooled by an unfortunate macro.

int command(string cmd)
e.g.

command("$sneeze");
command("$wield sword in left hand");

The commands naturally only work if they have been added to the living object by other
objects in the environment or inventory. To get a list of the available commands you can use
the efuns commands() or get_localcmd() depending on what kind of information you want.
commands() return an array of arrays with all the commands of a speci�ed object, containing
not only the command word, but also what object de�nes it and which function is called.
get_localcmd() is simpler, returning only an array with the command words. If no object is
speci�ed, this_object() is used by default. See the manual entry for commands() to get the
speci�cation of what the command array contains.

mixed commands(void|object ob)
string *get_localcmd(void|object ob)

If you use one function for several command words it becomes necessary to �nd out exactly
what command word was used. You use the efun query_verb() for that.

string query_verb()
e.g.

init()
{

::init();
add_action(&my_func(), "apa");
add_action(my_func, "bepa");
add_action(&my_func(), "cepa");

}

public int
my_func()
{

Chapter 2: Essential LPC and Mudlib 57

switch (query_verb())
{
case "apa":

< code >
break;

case "bepa":
< code >
break;

case "cepa":
< code >
break;

}
return 1;

}

Action functions should return 1 if they were properly evaluated, i.e. if the function called
was the right one with the right arguments. If you return 0, the gamedriver will look for other
actions with the same command word and try those, until one of them �nally returns 1, or
there's no more to test. There's a special efun called notify_fail() that you can use for
storing error messages in case no function 'takes' the command. Instead of giving the very
useless text 'What ?' when the player types the command you can give him some better info.
If there are several action commands using the same command word who all fail, the one who
last called notify_fail() will de�ne the message actually used.

notify_fail(string message)
e.g.

public void
init()
{

::init();
add_action(&do_bow(), "bow");

}

public int
do_bow(string who)
{

if (!present(find_player(who)), environment(this_player()))
{

notify_fail("There's no " + who + " here to bow to!\n");
return 0;

}

< bow code >

return 1;
}

If you are absolutely certain that the command given was directed only to your object
and you want to stop execution there, even if your object �nds an error with the command
(arguments or context or whatever), you can return 1. However, then you must use another

58 LPC 4.1

method to display error messages. The text stored with notify_fail() is only used if you
return 0.

If your object changes the available set of actions during execution and you want the
surrounding living objects to update their command set, you call the efun update_actions()
for the object in question. If you don't specify any object this_object() is used by default.
What happens is that all surrounding objects discard their command sets from the speci�ed
object and call init() in it again to get the new set.

update_actions(object ob)

2.3.4 Alarms: Asynchronous function execution

Sometimes it's desirable to postpone execution of code a while and sometimes you want things
to happen regularly. The gamedriver counts something called evaluation cost, or eval cost.
It's simply a way of measuring the amount of CPU cost an object uses. Any given object is
only allowed a certain amount of eval cost per execution chain. When that amount is used
up, the object aborts. How the eval cost is computed isn't very important, it's set so that the
game shouldn't be held up too long. However, the existence of eval cost makes a bit of special
programming necessary. When you have very heavy computations you need to do, they simply
won't �t within the maximum allowed eval cost, so you need to cut the job up in chunks and do
it bit by bit.

All of this adds up to a need for a function that allows you to do things regularly, or with
delays. The alarm functionality will do this for you. The efun set_alarm() will allow you to
create a delayed alarm, possibly repeating, that will call a given function as you decide.

int set_alarm(float delay, float repeat, function alarm_func)
remove_alarm(int alarm_id)
mixed get_alarm(int alarm_id)
mixed get_all_alarms()

The function returns a unique alarm number for that alarm and that object that you can
use later to manipulate the speci�c alarm. You can retrieve info for the alarm with the efun
get_alarm(), remove it with remove_alarm() or even get info about all alarms in an object
with the efun get_all_alarms(). The latter function is mostly used when you either haven't
bothered to save the alarm ids, or when you want to display info about the object. The efun
set_alarm() allows you both to de�ne a delay until the function is called the �rst time, and a
delay between repetitive calls. Every alarm call will start with an eval cost at 0.

NB! A word of caution here... Since the function gets called asynchronously in respect to
a user of the object, both this_player() and this_interactive() might return unde�ned
values. Sometimes 0, sometimes the object you expect, sometimes another value. So, don't rely
on what they return, instead stick the object you want to use in a variable before starting the
sequence and use that. Remember this since some efuns rely on a de�ned this_player() value.
A lot of tricky bugs has been traced back to this particular problem in the past, so beware!

IMPORTANT! READ THIS CAREFULLY!

It's very easy to fall to the temptation to split a heavy job into several alarm calls with
fast repetition rates. However, this is NOT the intended use for this efun. A deadly sin is to
have an alarm function that generates repeating alarms within a repeating alarm. The amount
of alarms will then grow exponentially and the ENTIRE GAME will stop almost immediately.
This is so incredibly stupid as to be a demoting o�ense, so make sure you do things RIGHT
the �rst time. In general, delays between repeating alarms should be greater than one second,
preferably two, as well as delays to single alarms.

Chapter 2: Essential LPC and Mudlib 59

The alarm functions will be demonstrated more extensively in chapter three.

2.3.5 The inventory and the environment

As described earlier, an object de�nes an inside as well as an outside. The outside, or environ-
ment can only be one object, while the inside, or inventory, can contain many objects.

A newly cloned object ends up in a sort of limbo, without an environment. In order for
an object to actually enter the simulated physical world of the game it has to be moved there.
However, not all objects can be moved around. In order for the game to work ANY object that
wants to be inserted somewhere or have objects inserted into it MUST inherit `/std/object.c'
somewhere along the way in the inheritance chain. Why this limitation? Well, the reason is
that the standard object de�nes a number of handy functions we rely on all objects in the game
to de�ne.

The most important of these lfuns are:

`move()' Move an object to another object and handle weight/volume accounting. Returns
success code. This function is responsible for calling the following:

`enter_inv()'
This function is called in an object when another object moves inside it.

`leave_inv()'
This function is called in an object when another object moves out from it.

`enter_env()'
This function is called in an object upon entering the environment of another object.

`leave_env()'
This function is called in an object upon leaving the environment of another object.

NB! The above ONLY works if you use the lfun move() in the object to move them around.
That's why it's so important that you do it this way and not by the efun that actually performs
the move.

The efun used in the move() lfun is move_object(). BUT, remember when doing that none
of the object internals like light, weight or volume is updated. As previously stated the efun
fails if the object you want to move, or move to, doesn't inherit `/std/object.c'. Furthermore
the efun can only be used from within the object that wants to move, it can't be used to move
another object. The same goes for the move() lfun, naturally.

In order to get the enclosing object reference you use the efun environment(). As I have
said before all objects have no environment on creation, it's only after they have been moved
somewhere that it gets a proper environment. Once an object has been moved into another
object it can't be moved out into limbo again, i.e. you can't move it to '0'. The objects in the
game you can expect not to have an environment are either rooms, souls, shadows or daemon
objects of one kind or another.

You have two efuns to chose between when it comes to �nding what's in the inventory of an
object. The efun all_inventory() returns an array with all the objects in the inventory of a
speci�ed object, while the efun deep_inventory() return an array with all objects recursively
found in the inventory, i.e. not only the objects you'll �nd immediately but also the objects in
the objects in the inventory, and so on.

object *all_inventory(object ob)
object *deep_inventory(object ob)
e.g.
/*

60 LPC 4.1

* This function dumps the inventory of Fatty on the screen,
* either just what's immediately visible or all depending
* on a given flag.
*/
void
fatty_say_aaah(int all)
{

object fatty_ob, *oblist;

if (!objectp((fatty_ob = find_player("fatty"))))
{

write("Sorry, Fatty isn't in the game today.\n");
return 0;

}

oblist = all ? deep_inventory(fatty_ob) : all_inventory(fatty_ob);

write("The " + (all ? "entire " : "") +
" content of Fatty's bloated tummy:\n");

dump_array(oblist);
}

So... how do you go about to determine if a speci�c object actually is present in the inventory
of another object? Well, the base object /std/object.c de�ne both names and descriptions in
objects, as described before. It also de�nes a special function called id() that, given a name,
checks all given names to an object for a match and returns 1 if the object has that name. The
efun present() takes a name or object reference and searches one or more object's inventories
for the presence of the named or speci�ed object. If you specify the object to search for as a
name string it will use the previously mentioned id() function to determine if the object is the
right one or not for all objects it examines. The execution of the function is aborted as soon
as it �nds one that �ts the description. That means that if there are several objects �tting the
search pattern you will only get one of them.

object present(object ob|string obref, object *oblist|object ob|void)
e.g.
/*
* Look for donuts in Fatty
*/
void
find_donut()
{

object fatty_ob;

fatty_ob = find_player("fatty");

// Can't find Fatty!
if (!objectp(fatty_ob))
{

write("Fatty isn't in at the moment, please try later.\n");
return;

}

if (present("donut", fatty_ob))

Chapter 2: Essential LPC and Mudlib 61

write("Yes, Fatty looks happy with life at present");
else

write("If I were you, I'd keep out of Fatty's " +
"reach until he's fed.\n");

}

If you don't give any second argument to present, it will look for the speci�ed object in
the inventory of this_object(), i.e. the object itself. If the second argument is given as an
array, the function will look for the speci�ed object in all of the objects in the array. If no �tting
object is found, 0 is returned.

2.3.6 String functions

In a gaming environment based on text, it's natural to expect that we've gone into a bit of
trouble in making string handling functions both easy to use and versatile. As you already
know, strings can be added together using the + operator, even mixing in integers without any
special considerations. Floats and object pointers have to be converted however,
oats with
the special ftoa() efun (described later) and object pointers with the file_name() efun that I
described earlier.

One of the most interesting properties of strings, apart from what they contain, is the
length. You �nd that with the efun strlen(). Since it accepts ints as well (returning 0 for
them) you can use it to test uninitialized string variables as well.

int strlen(string str)
e.g.

string str = "Fatty is a bloated blimp";
write("The length of the string '" + str +

"' is " + strlen(str) + " characters.\n");

Often you will want to capitalize names and sentences for output to the screen. You do that
with the efun capitalize(), it will only turn the �rst character in the string to upper case.
The converse of this function is the efun lower_case(), however, it turns the entire string into
lowercase and not only the �rst character.

string capitalize(string str)
string lower_case(string str)
e.g.
void
// Present a given name on the output, formatted properly
present_nice_name(string name)
{

string new_name;

// Assume name = "fAttY"
new_name = lower_case(name);
// Name is now = "fatty"
new_name = capitalize(name);

write("The name is: " + name + "\n");

/* The result is:

The name is: Fatty
*/

62 LPC 4.1

}

Sometimes it's desirable to break up a string in smaller pieces, just to present a nicer output.
The efun break_string() will do that for you. It can even pad spaces in front of the broken
strings if you want that. What it does is simply to insert newlines after whole words where you
have indicated you want to break it up. The third argument specifying either space pad length
or a string to pad with, is optional.

string break_string(string str, int brlen, int indlen|string indstr|void)
e.g.

string str = "This is the string I want to present in different ways.";

write(break_string(str, 20) + "\n");
write(break_string(str, 20, 5) + "\n");
write(break_string(str, 20, "Fatty says: ") + "\n");

/* The result is:

This is the string I
want to present in
different ways.

This is the string I
want to present in
different ways.

Fatty says: This is the string I
Fatty says: want to present in
Fatty says: different ways.

*/

You will very often want to present information stored in variables. As shown you can do
that by converting the contents to strings and then just print the strings. Integers don't even
have to be converted, you just add them on with the +-operator. However, what you get then
is something that's not very well formatted, you'll have to do that yourself. Particularly if you
try to produce tables this is a nuisance, having to determine the length of strings and add on a
certain amount of spaces depending on this length and so on. Instead of doing this you can use
the efun sprintf().

What sprintf() does is simply to take a format-string that describes how you want the
resulting string to look and put in the contents of the given variables according to your spec-
i�cations. The result is a string that you then can present on the screen with write() for
example.

All characters in the format string will be copied to the resulting string with exceptions of
the special pattern %<width spec><type spec>. The width speci�er can contain a �eld width
parameter, simply an integer that speci�es the width of the box you want to put it in and if
you want it left- or right-aligned. A positive number denotes right-alined insertion and negative
number left-aligned. If you omit the width speci�er the variable will be inserted in a box exactly
the width of its contents. The type speci�er is one or more characters de�ning what kind of
variable you want to have inserted.

`d'
`i' The integer argument is printed in decimal.

Chapter 2: Essential LPC and Mudlib 63

string str;
int a;

a = 7;
str = sprintf("test: >%-3d%i<", 1, a);

write(str + "\n");

// The result is:
// test: >1 7<

`s' The argument is a string.
`c' The integer arg is to be printed as a character.
`o' The integer arg is printed in octal.
`x' The integer arg is printed in hex.
`X' The integer arg is printed in hex (in capitals).
`O' The argument is an LPC datatype. This is an excellent function for debug purposes

since you can print ANY kind of variable using this speci�er.
e.g.

write(sprintf("1:%d 2:%s 3:%c 4:%o\n5:%x 6:%X 7:%O\n", 5,
"hupp happ", 85, 584, 32434, 85852, strlen));

// The result is:
// 1:5 2:hupp happ 3:U 4:1110
// 5:7eb2 6:14F5C 7:<<FUNCTION &strlen()>>

This speci�er is also the only one you can use for denoting
oats right now.

Now, these were all the available type speci�ers with a few width speci�ers given as exam-
ples. However, there's a lot more of them.

`' '' The integer argument is padded with a space if it is positive. This way you can
write neat tables with both positive and negative numbers without having to take
special measure to handle the minus-sign.

`+' Positive integer arguments are padded with a plus sign.
`'X'' The character(s) within the quotes is used to pad the argument to the �eld size.
`|' The argument will here be centered within the �eld size.
`#' This is table mode. The result will be a list of \n-separated words in a table within

the �eld size. This naturally only is meaningful with strings.
write((sprintf(">%19|s<\n", "Fatty the blimp")));

// The result is:
// > Fatty the blimp <

`=' This speci�er is only valid for strings. It outputs the result in columns if the argu-
ments are wider than their �eld size.

`*' Speci�es to sprintf to use the corresponding argument as �eld size. If you combine
this with table mode you will get neat tables formatted after the biggest argument.

64 LPC 4.1

`@' The argument is an array. You must naturally combine with with a type speci�er
denoting the speci�c type in the array.

Very often you want to �nd out if a certain substring is part of a greater string. You're not
interested in exactly where the string is, just that it is there. For that purpose you want some-
thing that closely resembles the UNIX shell approach to string matching. The efun wildmatch()
will do this for you. It simply return 1 if a speci�ed substring is part of a speci�ed main string,
and 0 otherwise. The substring can contain the simple UNIX pattern matching symbols.

�* matches any number of any characters
�? Matches any single character
�[xyz] Matches any characters in xyz
�[^xyz] Matches any characters not in xyz
�\c Matches c even if it is special

int wildmatch(string pattern, string str);
e.g.

// Anything ending with .foo
wildmatch("*.foo", "bar.foo") == 1
// Anything starting with a, b or c, containing at least
// one more character
wildmatch("[abc]?*", "axy") == 1
wildmatch("[abc]?*", "dxy") == 0
wildmatch("[abc]?*", "a") == 0

2.3.7 Bit functions

Sometimes it's desirable to store lots of simple `on/off'-type information. The quick and dirty
approach is then to allocate one integer for each of this information bearers and use them to hold
either a one or a zero to indicate the state. This makes for easy access and easy understanding,
but it's a pain when you want to store the info and it takes a lot of memory.

Instead you can use strings where every bit in a character (8 per char) can hold an infor-
mation state of the on/o� kind. The max number of bits right now in a string is something like
1200 = a string length of 150 characters. However, I doubt you'll ever need to store that many
states.

You set the bits with the efun set_bit() which takes two arguments, the �rst is the string
that actually contains the bits and the second is an integer specifying exactly what bit you
want to set. Remember that the �rst bit is bit number 0. To clear a bit you use the efun
clear_bit() that works analogous to set_bit(). When you need to test a bit you use the
efun test_bit() which simply takes the same arguments as the other efun but returns 1 or 0
depending on whether the tested bit was set or not.

You don't have to allocate a string in advance when you use set_bit(). Both set_bit()
and clear_bit() return the new modi�ed string, and in case it's not wide enough it will be
extended by set_bit(). However, clear_bit() will not shorten it automatically.

string set_bit(string bitstr, int the_bit)
string clear_bit(string bitstr, int the_bit)
int test_bit(string bitstr, int the_bit)
e.g.

// Set bit 23 in a new bitfield.
string bf;

Chapter 2: Essential LPC and Mudlib 65

bf = "";
bf = set_bit(bf, 22);

// Clear bit 93 in the same bitfield
bf = clear_bit(bf, 92);

// Test bit 3
if (test_bit(bf, 2))

write("Set!\n");
else

write("Clear!\n");

2.3.8 Time functions

All time measurements in UNIX, and hence in the mud, are measured starting at Jan 1, 1970 for
some obscure reason. Perhaps the creators of this system �gured that, from a computer point
of view, there's no reason ever to need to store a time stamp of an earlier date. In any case
that's how it is. Time stamps are integers and measure the time in seconds from that previously
mentioned date.

The simple efun time() will return the current time. You can either use it as it is or convert
it to a printable string with the ctime() efun. To �nd the creation time of a �le, you use the
efun file_time(), of an object the efun object_time().

Sometimes it's desirable to know when the object last was referenced, i.e. when it last had
a function called in it. If you then, as the �rst instruction in the function call last_reference_
time() you will get that time. However, remember that it naturally is set to the current time
as soon as that is done.

int time()
string ctime(int tm)
int file_time(string obref)
int object_time(object ob)
e.g.

write("This object was last referenced at " +
ctime(last_reference_time()) + "\n");

write("The time right now is: " + ctime(time()) + ".\n");
write("This object is " +

(time() - object_time(this_object())) +
" seconds old.\n");

There exists a convenient lfun convtime in the module /lib/time that will convert the
timestamp to days, hours, minutes and seconds, excluding those entries which doesn't contain
anything. Nice for more condensed listings.

2.3.9 Array/string conversion

Very often you come to situations where you either have a string that you would like to break
up into smaller strings based on a regular substring, or conversely where you have a number of
strings you would like to paste together to make up one single string. For this purpose you can
use the efuns explode() and implode().

The efun explode() takes two two strings as arguments, the �rst is the string you want to
break up, and the second is the pattern that explode() looks for as a marker of where to break
the string. It returns an array of strings holding the result. The efun implode() takes an array

66 LPC 4.1

and a string as arguments, returning one string made up from the contents of the array with
the string argument pasted in between all elements.

string *explode(string str, string expstr)
string implode(string *strlist, string impstr)
e.g.

string fruit = "apple and banana and pear " +
"and orange and fatty eating it all";

string *fruit_list;

fruit_list = explode(fruit, " and ");
dump_array(fruit_list);

/* The result is:
(Array)
[0] = (string) "apple"
[1] = (string) "banana"
[2] = (string) "pear"
[3] = (string) "orange"
[4] = (string) "fatty eating it all"

*/

fruit = implode(fruit_list, ", ");
write(fruit + "\n");

// The result is:
// apple, banana, pear, orange, fatty eating it all

2.3.10 Array functions

Arrays are actually not arrays, but rather ordered lists of LPC data types. They can be made
to contain any type of data, including other arrays. Keep in mind that arrays unlike other data
types are copied by reference rather than by value. This means that when you assign an array
to variable you do not copy the array, you merely store a reference, a pointer to the array, in
the variable.

e.g.
string *arr1, *arr2;

arr1 = ({ 1, 2, 3 });
arr2 = arr1;

arr2[1] = 5;

dump_array(arr1);
/*
* The output is:
*
* (Array)
* [0] = (int) 1
* [1] = (int) 5
* [2] = (int) 3
*/

Chapter 2: Essential LPC and Mudlib 67

So, as you can see, changing the array `arr2' e�ectively changes the contents of `arr1' as
well. You need to make a copy of `arr1' �rst, to make it unique. For example by simply adding
an empty array `({})' to it.

As you have learnt arrays can be automatically allocated simply by writing them in the
code, by adding elements to them or adding arrays to each other. However, if you need to
allocate an array immediately to a speci�ed size, you can use the allocate() efun. It takes as
an argument the size of the array you want and initializes all elements, regardless of array type,
to 0.

mixed *allocate(int num)
e.g.

string *str_arr;

str_arr = allocate(3);
str_arr[1] = "Fatty is a flabby blimp";
dump_array(str_arr);

/* The result is:
(Array)
[0] = (int) 0
[1] = (string) "Fatty is a flabby blimp"
[2] = (int) 0

*/

If you need to �nd out if a particular item is a member of an array or the index of that
item, you use the efun member_array(). It takes as arguments an array and an item of any
type, returning the index if it is part of the array and -1 if it isn't. If several instances of the
searched for item exists in the array, the �rst index is returned.

int member_array(mixed arr, mixed elem)
e.g.

int *arr = ({ 1, 55443, 123, -3, 5, 828, 120398, 5, 12 });
int index;

// Replace all instances of the value '5' with '33'
while ((index = member_array(arr, 5)) >= 0)

arr[index] = 33;

A very important efun to use with arrays is sizeof(). It simply returns the size, the
number of elements, in an array. It's very common that you need to loop through all elements
of an array to do something, or perhaps just �nd the last element, and then you need to know
the size.

int sizeof(mixed arr)
e.g.

string *arr = ({ "Fatty", "the", "blurp" });

write(implode(arr, " ") + " is wrong.\n");

// Replace the _last_ argument, but remember that
// in LPC we start counting at 0 so subtract 1.
arr[sizeof(arr) - 1] = "blimp";

write(implode(arr, " ") + " is correct.\n");

68 LPC 4.1

The efun pointerp() can be used to determine if a variable contains an array (of any type)
or not. This is useful when you have a function that might return 0 (NULL value) if something
goes wrong.

int pointerp(mixed arr)
e.g.

string *arr;

if (pointerp((arr = find_player("fatty")->get_blimps())))
write("Fatty's blimps right now are: " + implode(arr, ", ") + ".\n");

else
write("Fatty doesn't have any blimps, stupid. He is one.\n");

2.3.11 Mapping functions

Mappings, as stated earlier, are lists of associated indices and values. A value is associated with
another, so that by indexing with the �rst value you retrieve the second. Internally they are set
up as hashed lists, which makes for very quick lookups. However, they are memory hogs, using
up lots of memory as compared with arrays.

How to allocate mappings then? Well, that's very easy. Just declare it and assign a value
to an index value. If it exists, the old value is removed and the new put in its place. If it doesn't
exist it is allocated and stored in the mapping automatically. You can also use two arrays,
one with the indices and one with the values and combine those into a mapping with the efun
mkmapping(). Just remember that the two arrays must be of the same size.

mapping mkmapping(mixed indarr, mixed valarr)
e.g.

string *ind_arr, *val_arr;
mapping mp;

mp["fatty"] = "blimp";
mp["mrpr"] = "unique";
mp["olorin"] = "bloodshot";

// Is the same as...

ind_arr = ({ "fatty", "mrpr", "olorin" });
val_arr = ({ "blimp", "unique", "bloodshot" });
mp = mkmapping(ind_arr, val_arr);

// You can give the arrays directly, instead of through
// variables, of course.

As with arrays, there's a function available to determine if a given variable contains a map-
ping or not, mappingp(), that works in the exact same way. Use it in the same circumstances,
i.e. typically when a function might or might not return a mapping and you need to know for
certain that it contains a valid value before you try to index it.

To �nd the size of mapping you have to use the special efun m_sizeof(). However, it works
exactly like the corresponding array function, returning the amount of elements in the mapping.

Removing elements from a mapping is slightly more complicated than with arrays however,
you have to use the special function m_delete() to do that. m_delete() doesn't exactly remove
an element, what it does is that it creates a new mapping that is a copy of the indicated mapping,

Chapter 2: Essential LPC and Mudlib 69

apart from a particular value pair. As you can see, it takes the mapping to delete from and the
index to the value pair you want removed as arguments:

mapping m_delete(mapping delmap, mixed elem)
e.g.

mapping mp, mdel;

mp["fatty"] = "blimp";
mp["mrpr"] = "unique";
mp["olorin"] = "bloodshot";

mdel = m_delete(mp, "olorin");
dump_array(mdel);

/* Output:
*
* (Mapping) ([
* "mrpr":"unique"
* "fatty":"blimp"
*])
*/

Well... how to access all elements of a mapping then? Particularly one would want some kind
of reverse function to mkmapping() earlier. Actually, there's two: m_indices() and m_values()
which returns an array containing the index and value part of the given mapping respectively.
Due to a linguistic confusion, the efun m_indices() has a double called m_indexes(). They
both do the same thing however (actually just two names for the same function) so you can use
either, as your linguistic preferences dictate. :)

However, now we come to a sensitive subject - order in mappings. As explained earlier a
mapping has no de�ned internal order. Well... it has, but no order that you need or should
worry about. This order also changes when you remove or add value pairs to a mapping. All in
all this means that if you extract the indices and the values from a mapping, those two arrays
will correspond to each other, the �rst index value corresponding to the �rst array value, only
as long as the mapping hasn't been changed in between those two operations.

mixed m_indices(mapping mapp);
mixed m_values(mapping mapp);
e.g.

// This function displays a mapping and its contents
void
dump_mapping(mapping mp)
{

int i, sz;
mixed ind, val;

ind = m_indices(mp);
val = m_values(mp);

for (i = 0, sz = sizeof(ind); i < sz; i++)
write(sprintf("%O", ind[i]) + " corresponds to " +

sprintf("%O", val[i]) + "\n");
}

70 LPC 4.1

/* Example run: dump_mapping((["fatty" : "blimp",
* "mrpr" : "unique",
* "olorin" : "bloodshot"]));
*
* "olorin" corresponds to "bloodshot"
* "fatty" corresponds to "blimp"
* "mrpr" corresponds to "unique"
*
*/

There are two functions that facilitates the saving and restoration of object data, m_save_
object() will create a mapping that contains all global non-static variables, with the variable
names as string indices corresponding to the actual values. You can then either save this mapping
to �le directly, or pass it to another function as you please. The converse of this efun; m_restore_
object() takes a mapping as argument and reads the contents into the corresponding non-static
global variables.

2.3.12 Type conversion

Most user input is in the form of strings; you type something and then the game is supposed
to act upon your answer. This calls for functions that can analyze your input and translate it
to values you can use in your program. The syntactical analysis is very complicated, to say the
least, and I'm going to leave that part for chapter three. However, let's look a bit at the value
transformation bit. As stated input is in the form of strings, this makes it very interesting to
convert strings to integers and
oats, and vice versa.

Let's start with integers. Suppose you have received a string holding a numerical value and
you want to use it computations. In order to convert it to the proper integer value you use the
efun atoi(), very simply. It takes a string as argument and converts it to the corresponding
integer. However, if the string contained non-numerical characters apart from leading or trailing
spaces, 0 will be returned.

The name atoi() is derived from 'a(scii) to i(nteger)', for those of you who are interested
to know.

int atoi(string str)
e.g.

int val;

val = atoi("23");

write("23 + 3 = " + (val + 3) + "\n");

Floats have a corresponding efun, atof(), which converts a string to
oat. As you know by
now,
oats can't be converted to strings the same way integers can by simply adding them to
another string, but require some other kind of treatment. The efun ftoa() will convert a
oat
to a string, and the reverse functoin atof() will turn a string to a
oat, provided it contains
a
oating point number. Again, if the string contains any non-numerical characters the result
will be 0.

For conversion between integer and
oat you have the efuns itof() and ftoi(). Just keep
in mind that when you convert a
oat to integer, the decimal part will be cut o�, not rounded.

There are many occasions when you would want to store a value as a string and later
convert it back to a value. For this purpose you have the two efuns val2str() and str2val().

Chapter 2: Essential LPC and Mudlib 71

The output from val2str() can be printed, but is not intended to. You can store any kind of
variable contents as a string using these efuns.

The most used data converter, however, is the efun sscanf(). With sscanf() you can
specify a pattern that should be scanned for a certain value, extract that and put it into a
variable. This makes sscanf() a bit special since it handles variables given as arguments, so
it's impossible to get the function address of sscanf(). I know this sounds pretty much like
garbled Greek to you at this moment, but trust me. I'll explain more in detail in chapter
3. Anyway, otherwise sscanf() is fairly simple; you provide a string to to search through,
a pattern and the variables it should store data in, and it returns the number of matches it
actually managed to make.

The string you give for pattern matching is interpreted literally apart from these control
strings:

`%d' matches an integer number.

`%s' matches a character string.

`%f' matches a
oat.

`%%' matches a %-character.
int sscanf(string str, string pattern, ...);
e.g.

int wide;
float weight;
string orgstr;
string wide_type, weight_type;

/*
* Assume the question "How wide and heavy do you think Fatty is?"
* has been posed and answered to. Furthermore, assume that the
* answer is given on the form '<amount> <sort> and <amount> <sort>',
* as for example '4 yards and 3.2 tons'. Assume the first value
* always is an integer and that the second is a float.
*
* Assume that this answer is given in the variable 'orgstr'
*
* The above is naturally only convenient assumptions to make the
* example easy to write. In reality you'd better be prepared for
* any kind of format being given as answer.
*/

if (sscanf(orgstr, "%d %s and %f %s", wide, wide_type,
weight, weight_type) != 4)

{
write("Please give a full answer!\n");
return;

}

write("Aha, you think Fatty is " + wide + " " + wide_type +
" wide and " + ftoa(weight) + " " + weight_type + " heavy.\n");

72 LPC 4.1

2.3.13 Math functions

The efun random() will return an integer random number from 0 to one less the number you
give as an argument. For example random(8) will return an integer from 0 to 7.

The rest of the mathematical functions all return
oats and take
oats as arguments. The
trigonometric functions use radians, not degrees. Keep this in mind.
`float rnd()'

Returns a random number in the range 0 (inclusive) to 1 (exclusive), i.e. it might
be 0, but never 1.

`float sin(float)'
Compute the sinus value of an angle.

`float cos(float)'
Compute the cosinus value of an angle.

`float tan(float)'
Compute the tangens value of an angle.

`float asin(float)'
Compute the arcus sinus value in the range -pi/2 to pi/2.

`float acos(float)'
Compute the arcus cosinus value in the range 0 to pi.

`float atan(float)'
Compute the arcus tangens value in the range -pi/2 to pi/2.

`float atan2(float x, float y)'
Compute the argument (phase) of a rectangular coordinate in the range -pi to pi.

`float exp(float)'
Compute the exponential function using the natural logarithm e as base.

`float log(float)'
Compute the natural logaritm.

`float sinh(float)'
Compute the sinus hyperbolicus value.

`float cosh(float)'
Compute the cosinus hyperbolicus value.

`float tanh(float)'
Compute the tangens hyperbolicus value.

`float asinh(float)'
Compute the arcus sinus hyperbolicus value.

`float acosh(float)'
Compute the arcus cosinus hyperbolicus value.

`float atanh(float)'
Compute the arcus tangens hyperbolicus value.

`float abs(float)'
Compute the absolute value of the given argument.

`float fact(float)'
Compute the factorial (gamma function) of the given argument.

`float sqrt(float)'
Compute the square root of the given argument.

Chapter 2: Essential LPC and Mudlib 73

2.3.14 File handling

Using �les for storage of data is very important. Followingly there are a number of functions
available to aid you with this. However, let me start with a little sermon on the subject of CPU
usage:

Reading and writing to �les is very CPU intensive, perhaps not in the respect that the
CPU actually has a lot to do while it happens but that it is unable to do anything else at the
same time. In other words, reading and writing large portions of data often will slow the game
down signi�cantly. To impose a small limit on excessive usage of memory, disk and CPU, it's
impossible to handle more than ca 50 kb of data at one time. Files may be bigger, but you
can't write or read bigger chunks than that. This means you have to split up work on big �les
into portions to be executed sequentially, preferrably with a pause between each execution to
give the rest of the game time to do something. So, please keep in mind that this limit isn't
there to annoy you, to be sidestepped by nifty code, but as a reminder that you are hogging the
resources and should let others do something as well. Amen.

Let's start with the very basic conept of storing and restoring objects. What you want to
do usually is to store the global variables to �le, pending later restoration. For this purpose you
use the efuns save_object() and restore_object(). They both take a �lepath as argument
and naturally have to specify a �le which the object in question is privileged to write or read,
respectively. The resulting save�le will have a name ending in '.o', and you must remember to
specify this extension to restore_object(). This is optional with save_object() since it's
added automatically if you forget it. restore_object() returns the integer 1 on successful
reading of a �le, and 0 otherwise. The contents of the saved �le are a list of all global variables
with their contents on the same line separaterd by a space. The storage format of the string
is the same as with val2str() mentioned earlier for the content of a single variable. naturally
save_object() will store the names of the variables as well in front of the data it contains.

An important concept to remember is that data �les stored with save_object() are text
�les, and hence editable with the internal ed() editor. However, the lines might become very
long if you store large arrays for exampe. ed() will then truncate the lines at the maximum
length, and if you then store the contents back to �le you will in fact destroy part of the data,
making it impossible to read back. This unfortunately is a very common mistakes with new
archwizards who want to hack the KEEPERSAVE.o �le manually, instead of going through the
commands supplied for that purpose.

Mappings are the most convenient data type to be used with saving variables. Just store
the data you want in a mapping with a string describing it as index, then store the mapping
with the efun save_map() for later restoration with restore_map(). The advantage with this
method over save/restore_object() is that you aren't limited to global non-static variables
but can store whatever you like. The drawback is that retrieving data is a bit more complicated.

NB! Due to an inconsistency in the driver, indices can contain space characters, but it's
impossible to save any mapping containing such an index with save_map(). The obvious solution
(until we can release a patch for the driver) is to avoid using space in indices alltogether.

void save_object(string savepath);
int restore_object(string readpath);
void save_map(mapping mapp, string savepath);
mapping restore_map(string readpath);
e.g.

/*
* Assume these global variable definitions:
*

74 LPC 4.1

* string name, *desc;
* int flip;
* mapping data_map, smap;
*
* Assume we are interested in storing name, desc, flip and data_map
*/

// Set object inherent privileges by giving it the euid of the
// creator of the file
setuid();
seteuid(getuid());

// Method 1 save
save_object("myfile");

// Method 1 restore
if (restore_object("myfile"))

write("Yes!\n");
else

write("Naaaah..\n");

// Method 2 save
smap = (["name" : name,

"desc" : desc,
"flip" : flip,
"dmap" : data_map]);

save_map(smap, "myfile");

// Method 2 restore
smap = restore_map("myfile");
if (m_sizeof(smap))
{

name = smap["name"]; // Restore name
desc = smap["desc"]; // Restore desc
flip = smap["flip"]; // Restore flip
data_map = smap["dmap"]; // Restore data_map
write("Yes!\n");

}
else

write("Naaaah..\n");

A fact to be remembered is that the save format used internally by save_object() and
save_map() is the same, which makes it both possible and sometimes very useful to restore
data from objects that have saved their contents with save_object() by using restore_map()
and then just picking out the pieces you want from the resulting mapping. Assume that you
only would have been interested in restoring the variable 'desc' in the example above, then
you never would have bothered with the other statements in the Method 2 restore. Beware
that using restore_object() on a save�le stored with save_map() requires the indices used
in the original mapping to have the same name as the global variables intended to receive the
data, something that doesn't have to be true, as exempli�ed above. Restoring the Method 2
save�le with Method 1 restore will not result in an error, but it will fail to restore the variable
'data map'.

Chapter 2: Essential LPC and Mudlib 75

Well, these are all methods for storing data in variables. Very often you want to store
free-form data however, and not just data in variables. For this purpose you can use the efuns
write_bytes() and read_bytes(), or write_file() and read_file(). Basically both pairs
of functions do the same thing, i.e. save or read a string of certain length from �le. The only
di�erence is that write_bytes() can be used to overwrite a portion of a �le, while write_
file() only can append to a �le. Also, read_bytes() acts on exact bytes, while read_file()
acts on lines separated by newlines. Both write functions return 1 on success and 0 on failure.
Both read functions return a string with the result of the read operation on success, on failure
they return 0, so check the result with stringp() to make sure it has succeeded.

int write_bytes(string path, int pos, string text);
string read_bytes(string path, void|int pos, void|int num);
int write_file(string path, string text);
string read_file(string path, void|int pos, void|int num);

You can get information about a �le as well. You get the size of the contents with the efun
file_size(), but it can also be used to check the type and existence of a �le. If the returned
number is positive, it is a �le and the number represents the size in bytes of the contents, if the
�le doesn't exist, it returns -1 and if the �le actually is a directory it returns -2. To get the time
of last modi�cation you use the efun file_time().

int file_size(string path);
int file_time(string path);
e.g.

void file_info(string path)
{

int type, tm;

type = file_size(path);
tm = file_time(path);

write("The file '" + path + "' ");
switch (type)
{
case -1:

write("doesn't exist.\n");
break;

case -2:
write("is a directory, last modified " + ctime(tm) + ".\n");
break;

default:
write("is " + type + " bytes in size, last modified " +

ctime(tm) + ".\n");
break;

}
}

If you want to rename or move a �le you can use the efun rename(). Beware that this
operation actually �rst copies the �le and then removes the old one. It can also be used to move
directories. If you wish to remove a �le entirely, you use the efun rm(). The efun rm() returns 1
on success and 0 on failure, however beware that rename() works just the opposit way around,
it return 1 on failure and 0 if all is well.

76 LPC 4.1

int rename(string oldpath, string newpath);
int rm(string path);
e.g.

if (rm("myfile"))
write("Ok, removed.\n");

else
write("Sorry, no go.\n");

if (rename("myfile", "yourfile"))
write("Nope, still the same...\n");

else
write("Ok!\n");

The internal editor 'ed' is actually an efun that operates on a �le. You can use it for
whatever purpose you like, but keep in mind that most people don't really know how to use
it. Also remember that the efun ed() can be used to create new �les and edit old as per the
privileges de�ned by the object. You can provide a function pointer to a function that will be
called on termination of the efun. If you don't provide a �lepath, the user will be expected to
give the path and name of the �le from within the editor.

void ed(void|string path, void|function exit_func);

2.3.15 Directory handling

Creating, renaming and removing directories are handled by the efuns mkdir(), rename() and
rmdir(). You need write permissions in the directory you are doing this, of course. mkdir()
and rmdir() return 1 on success and 0 on failure. rename(), as already pointed out, works the
other way around and returns 1 on failure, 0 on success. rmdir() only works if the directory
you want to remove is empty, i.e. contains no other �les or directories.

int mkdir(string path);
int rename(string oldpath, string newpath);
int rmdir(string path);

For listing the contents of a directory, you can use the efun get_dir(). It simply returns
an array with the names of all �les in the speci�ed directory, or an empty array on failure.

string *get_dir(string path);
e.g.

string *dir_contents;
int i, sz;

dir_contents = get_dir("/d/Domain/fatty");

for (i = 0, sz = sizeof(dir_contents); i < sz; i++)
{

// See the code for file_info in a previous example
file_info(dir_contents[i]);

}

2.3.16 Screen input/output

By now you're fairly familiar with the efun write(), it simply outputs data to whoever is
registered as listening, it might be a player or it might be an object. Usually this function
su�ces, you have full control of what you want to write and who you want to write it to.
However, there exists one function that sometimes is necessary, namely write_sockect() that

Chapter 2: Essential LPC and Mudlib 77

only writes to the interactive user. If none exists, it writes to the central error log instead.
It works analogous to write() in all other aspects. Coding ordinary objects you will never
need to use this one, it's mostly or perhaps I should say only, used for certain mudlib objects,
particularly to do with logging in players.

Writing is nice, but sometimes you want to relate whole parts of �les quickly. Then you
should use the efun cat(). It will print a speci�ed portion of a �le directly on the screen quickly
and easily. There even exists a special efun called tail() for listing only about the last 1080
bytes of a �le in the same manner. cat() makes sure that it starts reading from a new line and
returns the number of lines actually read. tail() returns 1 on success and 0 on failure.

int cat(string path, int start, int len);
int tail(string path);
e.g.

// List 80 lines in the file TESTFILE, 20 lines down
cat("TESTFILE", 20, 80)

// List the ending of the same file
tail("TESTFILE);

A small warning, if you use cat() on long �les you might get an eval-cost error. This is
fairly common when you have logs or instructions you want to display, and forget to cut them
up into smaller parts.

Most input to LPC programs comes as arguments to commands. However, at times you
need to actually ask the player for input and he needs to answer. This poses a special problem
since object execution in the gamedriver is sequential; if you stop to wait for an answer, all
of the game will stop along with you while the player makes up his mind (if ever) and types.
This obviously won't do. Instead you can use the special efun input_to() which allows you to
specify a function which then will be called with whatever the player types as argument, after
the completion of the current function. This sounds complicated but is not, just look at this
example:

void input_to(function func, void|int noecho);
e.g.

interrogate_fun()
{

write("Please state your name: ");
input_to(func_2);

}

func_2(string n_inp)
{

string name;

if (!strlen(n_inp))
{

interrogate_fun();
return;

}

name = n_inp;
write("\nState your sex (male or female): ");
input_to(&func_3(, name));

78 LPC 4.1

}

func_3(string s_inp, string name)
{

string sex;

if (s_inp != "male" && s_inp != "female")
{

write("\nState your sex (male or female): ");
input_to(&func_3(,name));
return;

}

sex = s_inp;
write("\nState your occupation: ");
input_to(&func_4(, name, sex));

}

func_4(string o_inp, string name, string sex)
{

string occupation;

if (!strlen(o_inp))
{

interrogate_fun();
return;

}
occupation = o_inp;
write("\nYour name is " + name + ",\n"

+ "you are a " + sex + " " + occupation + ".\n"
+ "\nThank you for your cooperation!\n");

}

If you specify the second argument to input_to() as 1, whatever the player types will
not be echoed on his screen. This is what you want to do for passwords and other sensitive
information.

2.4 Some mud commands
It might look strange that I've put this chapter so late in the text. The trouble really is that of
the hen and the egg; It's impossible to understand and use the commands before understanding
how the game really works. To understand how the game works, you need to experiment with the
commands... Well, with any luck you were reading this manual before you started to experiment,
so this chapter comes just in time for you to sit down and start writing some code.

First of all I'd like to ask you to bone up on your editing skills. Either learn how to use
ed, which is the only available in-mud editor, or use an external editor together with ftp. I
recommend emacs with ange-ftp for that purpose, makes network-based retrieving and saving
�les virtually invisible.

The following commands are best described in the game. Just type help <command> to get
the full text. What I've written here is simply a short summation of their functionality.

Chapter 2: Essential LPC and Mudlib 79

2.4.1 Compile and load an object into gamedriver memory

With this command you instruct the gamedriver to try to compile and load a �le into memory.
This command is mostly used to make sure that a �le will load, but for some objects that never
are intended to be cloned (e.g. rooms), it's a good way of making them available by other
objects. As described earlier, this object is called the master object.

If the �le won't load, the actual error message ends up in two logs; the central /lplog �le
and the error log belonging to the domain or wizard who made the object. For domains the
path to the log is /d/<Domain>/log/errors, and for wizards it is /w/<Wizard>/log/errors.

Unfortunately, the error messages are sometimes hard to understand. Again unfortunately,
I cannot help you much with that particular problem; there's simply too many errors possible
(and you'll be exploring them all, believe me :). Most are pretty self-explanatory, and with time
you will learn to recognize and understand the trickier ones.

The command load works on several �les as well, which then will be loaded one by one with
a short delay. However, loading is a rather heavy operation on top of which a master object
takes resources in the gamedriver, so don't load �les you don't intend to use right away.

2.4.2 Compile, load and clone an object to the game

If an object has been successfully loaded, it can be cloned. The clone command actually does
both, if necessary. Remember to check the error logs if you get problems.

2.4.3 Destroy a cloned object

This command is used to remove a cloned object from the game.

2.4.4 Update a loaded object

This command is used when you have made a change in a �le and need to instruct the gamedriver
to recompile the program.

The update command actually only destroys the master object, nothing else.

2.5 The Tracer tool
The built-in wiztool called the Tracer tool is perhaps your absolutly best friend in trying to
�gure out what's going on inside an object that already is loaded into the game. It allows you to
call speci�c function in any object, regardless of location, list inventories and even move objects
around. In fact, it's so useful that on Genesis any other wiztool is forbidden. The reason being
that you should learn how to use this one and not waste time on making anything inferior.

Some people complain that it's a bit di�cult to use, but that's just because they didn't
bother to read the manual. In any case, I'm going to give a more thorough lesson here and just
maybe you won't have to bother with the in-game manual, which admittedly isn't the easiest of
reads.

Please notice that all tracer tool commands are upper-case. This is to distinguish them
from the ordinary commands, some of which have the same name. Also notice that since the
tracer tool is intended for use by working people, it's only available to full wizards.

To begin with, let's look at how the tracer identi�es an object:
`name' This speci�es the name of an object in your inventory or your environment, simply

the object name. Beware that many objects share names (e.g. 'human', 'sword'
etc).

`"desc"' This speci�es the short description of an object in your inventory or your environ-
ment. Usually more exact than just the name.

80 LPC 4.1

`path' This speci�es a �le path to an object. If you want a speci�c indiviual item, you add
the clone number. For instance not just ~Ansalon/guild/society/obj/nametag
but speci�cally exactly ~Ansalon/guild/society/obj/nametag#22144 and no
other.
The non-speci�c path identi�es the master object, of course.

`@name' This speci�es the name of a player or a living (a monster) anywhere in the game.
Please notice that the tracer will �nd the name as registerd by a call of the efun
set_living_name() (described earlier) and not the name set by set_name() in the
object itself. A player is automatically added to the list of living objects.

`*name' This speci�es the name of a player, and nothing else.
`here' This speci�es the environment of yourself, usually you are standing in a room of

some kind.
`me' This speci�es yourself, your player object.
`#num' This speci�es the object number 'num' in the scope you indicate. If for example

you know that the sword you are carrying is the third object, the reference would
be '#3', simply. Please beware that object order may change without warning. If
for example someone gives you something just before you type the command, object
'#3' will no longer be the one you thought it was. Instead make extensive use of
tracer variables (explained in the command Set) to void this problem.

`$var' This speci�es the contents of a tracer variable (explained later in the command Set).

Objects often exist in some sort of environment. Sometimes in the same place as another
object, sometimes inside an object, sometimes the object is enveloping another. In order to give
a relation of the type "the second object inside the teddybear in the same room as I am standing
in", you give a list of object speci�cations separated by a :. The environment of an object is
speci�ed with a caret (:^).

For example, the previous description would come out as me:^:teddybear:#2. This really
isn't very complicated, you just build the path based on an object that you are certain you know
which it is.

Another example: "the sword stored in a bag held by the player Adam": *adam:bag:sword.

2.5.1 Perform a command in the environment of a player

This command actually moves you to the environment of the speci�ed player to perform the
given command. The move is a forced move so that weight accounting and destination tests
aren't performed, but you are still actually moved there, so any triggers on entering and leaving
will be noti�ed.

Syntax: At <player name> <command>

Usually there's better ways of doing things than by this command, however, for some
problems there are no substitues. A good example is that you want to take a look in the room
that a player, for instance Adam, is standing in:

At adam look

You might want to take the precaution of going invisible before doing it so that most
player-oriented output is forestalled.

2.5.2 Call a function in an object

This is a most particularly useful command. It enables you to call functions in an object with
any parameters you like.

Chapter 2: Essential LPC and Mudlib 81

Syntax: Call <object spec> arg1%%arg2%%...

For example, I want to set the property OBJ I VOLUME to 55 in the second object in
Adam's inventory:

Call *adam:#2 add_prop _obj_i_volume%%55

Please also notice that I used the string the property really is de�ned to, not the property
name.

2.5.3 Cat the �le associated with an object

This, along with More is a really nifty function. What it does is that it lists the source �le of
the speci�ed object. Well, at least the �rst 100 lines anyway. For more than that, just use the
aforementioned More command instead.

Syntax: Cat <object spec>

2.5.4 Destroy all non-interactive objects in an object

This is a handy command for clearing up a cluttered room. Usually something that you'd want
to do before inviting a mortal to your workroom. I just wish it was this easy in Real Life (tm)...

Syntax: Clean <room spec>

Please notice that all non-interactive objects, i.e. monsters and gadgets alike, are destroyed.

2.5.5 Destruct a speci�c object

This command is used to destroy a speci�ed object. It tries to do it the polite way, but if you
specify a
ag it will do it the hard way too. This is very useful for objects that for some reason
or other (usually bad code in leave_env()) turns indestructable by normal means.

Syntax: Destruct [-f] <object spec>

Please don't use the -f
ag unless really necessary.

2.5.6 Print information about an object

This is the command you use to list information about an object, and there's plenty to choose
from:

Syntax: Dump <object spec> <what>

`<nothing>'
The command Dump <object spec> lists the name, path, creator uid and euid of
an object.

`<variable>'
This given parameter, unless matched by any of the other below, is interpreted to
mean a variable in the speci�ed object. The command then displays the value of
that variable.
NB! This is a most amazingly useful parameter. It means that to see a speci�c
variable in an object, you do not have to change its code to print it, you can extract
it at any time. Of course, if you need to see transcient behaviour you will still need
to put in debug print messages, but most of the time it's su�cient to see the results
as re
ected by the contents of the variable in the object at the time you can access
it.

`alarms' This parameter lists information about all pending alarms running in an object.

82 LPC 4.1

`cpu' This parameter lists the cpu time consumed by the speci�ed object. This informa-
tion actually is only interesting to mudlib developers and only works if the driver is
compiled with the PROFILE OBJS
ag.

`flags' This parameter lists all gamedriver-relevant object
ags associated with the speci�ed
object together with some object status information. This information actually is
only interesting to gamedriver developers.

`functions'
This parameter lists all function names de�ned by the speci�ed object. In case the
list looks short to you, remember that most objects consist of a long inheritance
chain, and the inherited object's functions are not listed; you will have to ask for
them separately.

`info' This parameter lists some basic gamedriver-relevant information associated with
the speci�ed object. This information actually is only interesting to gamedriver
developers.

`inherits'
This parameter lists the entire inheritance chain of the speci�ed object.

`inv | inventory'
This parameter lists the inventory of an object and numbers them for easy further
referencing.

`items' This parameter lists all pseudo-items, i.e. items that only have a descriptive exis-
tence or command functionality existence, that has been added to an object. The
list of command items is split in a section with commands and a section with items.
Each pair of commands and items is terminated with their index number.

`light' This parameter lists the light status for the speci�ed object and reports on the
e�ects of all contained objects as well. It will tell you the current light status and
whether the object generates or absorbs light.

`profile' This parameter lists any stored pro�ling information associated with the speci�ed
object. This information is only interesting to gamedriver developers and only works
if the driver is compiled with the PROFILE FUNS
ag.

`props | properties'
This parameter lists all properties stored in the speci�ed object.

`shadows' This parameter lists all shadow active on the referenced object.

`vars | variables'
This parameter lists all variables of an object.

`wizinfo' This parameter prints the special wizard information that can be stored in the
OBJ S WIZINFO property in any object. This information is directed only at
wizards and should give directions on handling or the purpose of the object.
Please notice that it's the responsability of the creator of the object to make sure
that this information is added to the object.

2.5.7 Ed the �le associated with an object

This command starts the ed-editor on the �le referred to by the speci�ed object.
Syntax: Ed <object spec>

Chapter 2: Essential LPC and Mudlib 83

2.5.8 Enter the inventory of an object

This command teleports you to the inventory of the indicated object. Just make sure that the
destination was intended for player accomodation, you are not able to Move inside just any
object.

Syntax: Move <object spec>

2.5.9 Perform a command in another object

This command works almost the same as the At command, with the di�erence that it moves you
to the inventory of any object to perform the command. Please be careful since most objects
are not intended to be entered by a player object.

Syntax: In <object spec> <command>

2.5.10 More the �le associated with an object

This very useful command lists the source �le of the speci�ed object split into pages.
Syntax: More <object spec>

2.5.11 Move an object to a destination

This command is used to move any object anywhere. Ordinarily the destination object is checked
to make sure that a move is legal, but you can override this with a
ag. Please just notice that
in case you use the override
ag weight, volume and light status is not updated for the container
object.

The command is very useful for rescuing players (and wizards) who get stuck in the 'big
black void' due to bugs. Simply execute the command Move -f *<player> here.

Syntax: Move [-f] <object spec> <destination spec>

2.5.12 Set a tracer variable

As explained earlier, one of the greatest dangers in using the tracer tool is that the inventory
position of an object you want to perform an action on changes.

Syntax: Set $<variable> <object spec> Syntax: Set
Assume for example that you want to Reload a sword of your making in the inventory of

the player Adam. The sword is buggy and you need to remove it invisibly to Adam. To �nd
the correct object position in the inventory you have typed Dump *adam inv and found out that
it is object number �ve. Then you perform the command Destruct *adam:#5. Unfortunately,
between the Dump and the Destruct command, Adam dropped something out of his inventory
and you �nd that you have destroyed his heap of 1249 platinum coins. Adam will hardly be
pleased.

Instead, obtain the object reference and store that in a variable. On having found out that
the object is the �fth in Adam's inventory, do Set $sword *adam:#5. The tracer then reports
that the variable is set to a heap of platinum coins, which means you have to take a look in his
inventory again. This time you �nd out that the object moved to position four. You do Set
$sword *adam:#4 and the tracer reports that the variable now points to the sword you want to
destroy. Now you type Destruct $sword and the sword and nothing but the sword is destroyed.

You can have any number of variables set, but please notice that they are forgotten if you
log out. Also please notice that if an object is destroyed, the variable is removed.

To list all variables you have stored, just perform the commmand Set with no arguments.

84 LPC 4.1

A neat feature is that the last speci�ed object automatically gets stored as $, which means
that having once speci�ed an object in any tracer command, you then only need to type
<Command> $ <options> to specify the same object again.

2.5.13 Update, load, clone and replace an object

With this command, you can update an objects master object, reclone and move it to it's current
location, then destruct the old instance if all went well.

The reload process tries to move objects 'nicely', however, if that fails, it will attempt to
force move automatically.

If the reload process encounters a fatal error during execution, it will be aborted and you
will continue to have the old object.

Syntax: Reload <object spec>

2.5.14 Tail the �le associated with an object

This command works just like Cat and More, with the di�erence that it displays just the last
few lines of a �le.

Chapter 3: Advanced LPC and Mudlib 85

3 Advanced LPC and Mudlib

This chapter will deal with the more advanced portions of LPC. This does not mean that you
are able to do without them, other than in very simple objects. It's just that you really need to
understand the basics of LPC as described in the earlier two chapters before you can assimilate
what I'll describe here.

Please don't hesitate to review earlier portions as necessary while you read the text.

3.1 Function data type, part 3
The function type hasn't been discussed in any depth earlier. You've seen it used but not really
explained in any detail. However, it's very important that you do understand how they work,
as you can build very complex and e�ective expressions using them, and above all you will both
see them used and even be forced to use them here and there. All the functions that used to
take function names as strings now take function pointers as arguments instead.

3.1.1 The basics of the function type

Functions are accessed through function pointers. As has been demonstrated implicitly earlier,
every function call basically is nothing but a dereferenced function pointer along with a list of
arguments. Take this simple example:

void
my_func(string str, int value)
{

write("The string is '" + str + "' and the value is " + value + ".\n");
return;

}

The function is then called, as demonstrated earlier, by giving the function name followed
by a list of the arguments within brackets:

e.g.
my_func("smurf", 1000);

Now we add the idea of the function type where the address of the function can be taken
and assigned to another variable:

e.g.
function new_func;

new_func = my_func; // or equivalent
new_func = &my_func();

my_func("smurf", 1000); // or equivalent
new_func("smurf", 1000);

Beware that before the variable new_func has been set to a proper value, it doesn't refer
to any function at all. Using it will cause a run-time error.

3.1.2 Partial argument lists

As seen in the previous chapter, it's possible to assign the reference of a function to a function
variable with another name. Another handy feature is that it's possible to set this new function
up so that it de�nes a number of the arguments to the original function as constants, leaving
only the remaining as variables. Look at this example:

86 LPC 4.1

e.g.
void
tell_player(object player, string mess)
{

player->catch_msg(mess + "\n");
}

void
my_func()
{

function mod_tell;

mod_tell = &tell_player(this_player(),);

mod_tell("Hello!"); // Equivalent to

tell_player(this_player(), "Hello!");
}

This works �ne for any number of arguments. The remaining arguments will be �lled in
left to right, just as you would like to expect. i.e. a function with the header void func(int
a, int b, int c, int d, int e) de�ned as function my_func = func(1, , 3, 4,) and called
as my_func(100, 101) is eqvivalent to the call func(1, 100, 3, 4, 101).

As you now understand, the &function_name(argument_list)-way of obtaining function
references always count as a partial function de�nition, even if the argument list is empty. This
really isn't that important from a practical point of view, not from your end anyway, but it's
good to know what you're talking about even so.

3.1.3 Complex function applications

With the previous chapters in memory, the interesting question becomes 'What can you put into
one of these function calls?'. The answer is 'Practically anything!', it's just a matter of knowing
how to write the code in the right way (as usual).

The tricky bit usually is operators. For most of them you use the special keyword operator
to encapsulate the actual operator. The operators that can be encapsulated are +, -, *, /, %, &,
|, ^, >>, <<, <, >, <=, >=, ==, !=, []. For the []-operator you then have to index it in order to
make use of it, but more about that later.

Often enough you want to perform one operation and then send the result to another one.
You do that with the @-keyword, but beware that execution is right-to-left on that line, and
that you'll have to �gure relational operators that way too!

This all sounds a bit di�cult to understand, but let me give you an example to make
everything clear:

Assume you have an array like this representing some player names:
string *arr = ({ "Bocephus", "Thurol", "Elessar", "Budwise",

"Akhan", "Logg" });

Now assume you want to �lter out the names that are more than �ve characters long.
Usually this involves running a loop over the contents of the array, examining each entry in turn
to determine its invidual length, and �nally building an array containing the result.

string *

Chapter 3: Advanced LPC and Mudlib 87

func(string *arr)
{

int i, sz;
string *result = ({});

for (i = 0, sz = len(arr); i < sz; i++)
{

if (strlen(arr[i]) > 5)
result += ({ arr[i] })

}

return result;
}

Naturally, this could be sorted with the efun filter:

int
filterfunc(string item)
{

return strlen(item);
}

string *
func(string *arr)
{

return filter(arr, filter_func);
}

But that requires me to write a separate function for the �lter. No, a much more pratical
solution is one that goes into a single line, like this:

// ... in actual code defining arr

result = filter(arr, &operator(<)(5) @ strlen);

NB! Pay special attention to the operator here, notice that since the parsing is done right-
to-left, the operator used is < as the expression becomes 5 < strlen(name).

Now assume you want to complicate matters; you want to �nd out whom of the �ltered
people are mortals. Well, simple.. let's just add to the expression:

this:
// ... in actual code defining arr

result = filter(filter(arr, &operator(<)(5) @ strlen),
&operator(==)(0) @ SECURITY->query_wiz_rank);

As you can see, I just expanded the entry with a �lter-call to process the results of the �rst.
Ok, let's try something slightly more di�cult. What will this line do when you put it on

the screen?
exec return implode(sort_array(map(filter(users(), sizeof @

&filter(, &call_other(, "id", "shield")) @
deep_inventory)->query_real_name(), capitalize)), ", ");

88 LPC 4.1

Well now, that wasn't too di�cult, now was it?
First, I loop through all users and look through their entire inventories. I �lter out those

users who are carrying a shield, and obtain their names. The resulting array I then sort,
capitalize and paste together into a string with a , in between each name. Finally I return the
resulting string.

In other words, I obtain a list of all users who are carrying a shield.
NB! Now it is time for a warning. As you can see from the previous example, I had no

trouble at all generating a list of objects that probably reached into the thousands before starting
to narrow things down. Let me check... Yes, in this case more than 1500 objects, all being called
to see if they match the name "shield" and then other on top of that further operations applied
to the resulting lists. Obviously it's very easy to generate massive calls which tax the computer
quite a lot.

What this warning amounts to really is to think before you code, so that you won't bog
down the computer with lots of calls that perhaps aren't strictly necessary.

3.2 How to parse player commands
Parsing commands written by a player can be one of the more taxing tasks in programming
the mud. It's also one of the more important ones, as intelligent command parsing can turn an
otherwise annoying object into a useful one.

However, instead of having to do command parsing on your own there's a very neat efun
called parse_command() available that'll take care of most of the chore for you. It's slightly
tricky to use at �rst, but learning it is most worthwhile.

As you'll �nd, parse_command() looks slightly similar to sscanf() operating on word basis.
Like sscanf() it will return values in its arguments (pass by reference) which might look slightly
confusing but is necessary in this case.

The syntax is:
int parse_command(string command, object target|*targets, string pattern,

mixed arg, ...)

Let's take this one bit at a time.
The command above simply is what the player wrote; the text you want to parse for its

contents.
The target or list of targets is the objects you want the command to operate on. I.e. the

object or objects in which you expect the player to �nd the items he is manipulating.
The pattern is the text pattern you wish to match with the command.
The arguments is a list of arguments where the results of successful parsing will end up.
The efun will return a boolean value (1 or 0) denoting whether a match was possible or not.
Let's look at an example here: Assume you have coded an apple tree and you want the user

to be able to pick one or more apples from the tree, or from the room the tree resides in which
might have fallen down.

In the tree, you would add this code:
static int do_pick(string arg); // Forward declaration

init()

Chapter 3: Advanced LPC and Mudlib 89

{
add_action(do_pick, "pick")

}

static int
do_pick(string arg)
{

if (!parse_command(arg, environment(this_player()) +
inventory(this_object()),

"'apple' [from tree]
}

3.3 Masking functions in runtime, part 2
The idea with the shadow functionality is to mask one or more functions in a target object with
others having the same name in a shadow object The purpose of this procedure is usually to
modify the behaviour of the target object in some way.

Shadows are tricky in the respect that they are managed in runtime and not during compile
time. This means that not only may shadows fail for various reasons which I'll go in to later,
but they also unintentionally may cause the target object to stop working.

The basic rule is not to use shadows unless you really have to; they often are more trouble
than they are worth. With that dire warning in mind, let us go on to the subject of creating
and using them.

This in turn means that all functions in the shadowing object either has to be unique to the
object itself, or be shadowable in the target object. Now, shadowing isn't completely without
conditions:
� A shadow (an object shadowing another object) cannot be shadowed
� An object de�ning the function query_prevent_shadow() returning the integer value 1

cannot be shadowed. NB! This is determined by a call to the function query_allow_
shadow() in /secure/master.c, so this actually may work di�erently on di�erent muds.

� A function cannot be shadowed if it is declared nomask.
� Variables cannot be shadowed, which means that any the shadowing function of a function

that makes use of internal variables has to somehow access those variables in the target
object to make things work.
Please notice that it's perfectly possible to declare the same variable globally in the shadow
as is used in the target object, but that we then are talking about two di�erent variables.
This means that calls which are intercepted by the shadow will use the shadow-declared
variable, and calls intercepted by the target object (to non-shadowed functions) will use its
own local variable, perhaps producing con
icting results.

� Only calls made with call_other() are processed by the shadowing mechanism. This
means that any direct calls to a function in an object will work just as usual and never
notice the shadow function. This often means that unless the creator of an object intended
for a function to be shadowed, it might both be using global variables directly (instead of
through public-declared wrapper functions) and be calling that function directly instead of
through call_other(). Oh, I hope you remember that constructions on the form obref-
>function(args) is just another way of writing call_other(obref, "function", args).

There's a few consequences of the above that are worth remembering. As you already know,
any object you want to bring into the game proper has to be a derivate of the /std/object.c

90 LPC 4.1

object. If you create an object without inheriting /std/object.c or one of its derivates, that
object can never be inserted in to the inventory of any other object, which in turn means that it
never can appear in the game. Since the /std/object.c object contains a number of unmaskable
functions, this means that a shadow as such never can be inserted into the game. Well, unless it
inherits /std/object.c itself, and only shadows some kind of non-insertable object, of course.
I suppose that this isn't impossible as such, just rather unlikely.

Assume that an object has been shadowed by several objects, and that the same function is
shadowed in all objects, which shadow �nally gets the call? This is not an impossible situation
if you're thinking that I'm posing a trick question; since you're not shadowing a shadow, but the
original object, and since the function is shadowable there's no preventing this from happening.
The answer is that it's the last function to shadow the object that 'wins'. Obviously this is
not a very good situation, so often the best way of making sure that your object is the only
�nal object to shadow another is to de�ne the function query_prevent_shadow() to return 1.
However, this obviously makes it impossible for all other objects to shadow any other function
as well, so one has to be careful lest one interrupts some other object from working.

By far the easiest way of creating a working shadow object is to inherit the standard shadow
object /std/shadow.c and use the functionality provided there. With that module you're not
only getting a standardized way of dealing with shadows that most other object-managing
objects recognize and can use, you're also getting a number of handy functions that make sure
that the shadow doesn't shadow the same object twice by mistake, that autoloading shadows
on players automatically latch on to the player on login again as well as provide a mechanism
for removing the shadow.

Assume for example that you want to rede�ne the gender of a player who's been a�ected by
an evil spell of some kind. The function you want to shadow is called query_gender_string()
and can be found in /std/living/gender.c. This is how you do it:

inherit "/std/shadow";

int
start(string pl_name)
{

return(objectp(shadow_me(pl_name)));
}

int
stop()
{

remove_shadow();
}

string
query_gender_string()
{

return "xxx";
}

Please notice that I've added both a start and a stop function for easy testing; these really
aren't necessary as long as the shadow somehow calls shadow_me() with the target (either as a
name or an object reference) as argument.

The standard shadow module also provides easy access to the original object. The variable
shadow_who is set to the original object, so in the shadow object any call on the form shadow_

Chapter 3: Advanced LPC and Mudlib 91

who->function() goes to the original object function, even if it is shadowed in the shadow
object.

3.4 Pragma directives
Apart from the standard commands, the interpreter can be given speci�c instructions regarding
certain object behaviour. This is done with a special #pragma directive to the interpreter at
the top of the �le.

A number of #pragma directives exist:

`#pragma strict_types'
This is perhaps the most important, most useful interpreter directive there is. It
instructs the interpreter to require all functions to be strictly typed. I.e. the type
of the function has to match the type of what is returned by the function, and the
type of the variable recieving the function result has to match the function type as
well.
Without this pragma, the interpreter treats all functions as 'mixed', which perhaps
is convenient but invariably results in buggy code. Consistent and frequent use of
this pragma enhances both short-time code quality and improves maintainability
immensly.
There are times when mixed functions are useful, but it's perfectly legal - and
advisable - still to use the strict types pragma and then explicitly declare such
functions as mixed rather than default all of them to mixed.

`#pragma no_clone'
This pragma prevents the object from being cloned. Instead a run-time error indi-
cating that a master object is missing is generated.
This is useful for 'abstract classes' of objects, i.e. object that are intended to be
used as base classes only and never to be instanciated on their own.

`#pragma no_inherit'
This pragma prevents an object from being inherited. This is sometimes useful for
items that are intended to work as end-use objects only.

`#pragma resident'
This directive causes an object to remain in memory inde�nately. Usually when the
last reference to an object is removed (by destructing the master of an object after
all the clones have been destructed) the master program is removed from memory
to make room for new ones.
However, if an object is likely to re-appear very quickly it can make sense never to
allow the interpreter to forget it. That way no unneccesary e�ort needs to be spent
compiling the object the next time it's called upon.
NB! Almost needless to say; use this directive with extreme caution as it clobbers
the available memory. Memory is a precious enough commodity as it is without
having resident objects hogging the room!

`#pragma save_binary'
This directive instructs the interpreter to store the precompiled version of the object
to disk. I.e. the result of the preparser is then stored to �le in a special directory.
The next time the object is loaded the interpreter will �rst check that special dir for a
precompiled version, and if it exists load that. That makes for speed improvements,
particularly noticable after reboot when a lot of objects need to load almost at the
same time.

92 LPC 4.1

NB! This pragma is slightly obsolete, as it is globally de�ned. It won't harm to put
it into the program, but it won't do anything that isn't already done either.

`#pragma no_shadow'
This directive prevents an object from being shadowed using the shadow kfun.

3.5 Writing e�cient code
Actually, this subject is closely linked to the very thing I said I would not explain - namely how
to program. I'll retract my words - a bit - and talk about some 'what to do's and even more
importantly 'what not to do's.

3.5.1 E�cient loops

This might seem rather trivial, in how many ways can you mess up a loop anyway? Well...
actually, quite a few. Let's start with the most common mistake. Assume you have a large
array, let's call it 'big arr', and let's assume you want to loop over all elements in that array,
what do you do? "Simple!", you exclaim, "A 'for' loop, of course!". Sure... but how do you
write it? Well, the most common implementation usually looks something like this:

int i;

for (i = 0; i < sizeof(big_arr); i++)
{

// Here we do something with the array
}

Ok... now why is this bad? Well, if you review the chapter on how the for statement works,
you'll �nd that the three parts inside the round brackets actually gets executed. The �rst one
once at the start, the second (or middle) part every time the loop is run and the third part also
every time the current loop is �nished.

This obviously means that the sizeof() function gets executed every time the loop is run.
rather a waste of time given the fact that the array hardly is intended to change size. If it was,
that would have been another matter, but as it isn't... No. Write like this instead:

int i, sz;

for (i = 0, sz = sizeof(big_arr); i < sz ; i++)
{

// Here we do something with the array
}

See? The variables 'i' and 'sz' gets assigned their respective values at the start of the loop,
and only then. The counter 'i' gets set to 0 and the size variable 'sz' gets set to the size of the
array. During the entire loop after that, 'i' is compared with 'sz' instead of repeatedly recompute
the size of the array.

Believe it or not, this is a very common mistake, all people do it. While the savings in doing
as I suggest might not seem that great, well... multiply this small gain in one loop by all the
loops in the mud and all the number of times that those loops are run and you'll end up with
quite a big number. The added cost in doing this is one local variable, which is a small enough
price to pay.

Keep this general problem in mind since a lot of cases don't use arrays perhaps, but map-
pings or other general containers of items you want to loop through. The solution apart from
speci�cs in identifying the size of that container is always the same.

Chapter 3: Advanced LPC and Mudlib 93

3.5.2 Abusing de�nes

A common mistake is to put HUGE arrays and mappings in a de�ne. It's very tempting
really, assume for example that you have a mapping that contains the de�nitions of guild ranks,
descriptions, various skill limits, bene�t adjustors etc in one big mapping with the rank as index.
Very often you'd then need to index that mapping to look up things. Probably it'll be done
dozens of times in the central guild object. You'd have something like this:

// Top of file

#define GUILD_MAP (["new": ({ "beginner", "Utter newbie", 3, 2343, ... }), \
"older": ({ \
... /* Perhaps another 10-20 lines or more */ \

])

// code, example of use
write("Your rank is: " + GUILD_MAP[rank][1] + "\n");

// more code...

However... just pause for a second and consider what the #define statement really does...
well, it substitutes whatever you had as a pattern for the #define body. So, in every instance
where you had written GUILD_MAP the entire mapping would be copied in. And every time it was
put in, the gamedriver would have to interpret, store and index the mapping again. It doesn't
take a genius level of intelligence to realize that this is a horrible waste of both memory and
time.

So... instead of doing it this way you store the mapping in a global variable. Then you use
that variable as you use the de�ne. I.e.

// Top of file

mapping GuildMap;

create_object()
{

// code

GuildMap = (["new": ({ "beginner", "Utter newbie", 3, 2343, ... }), \
"older": ({ \
... /* Perhaps another 10-20 lines or more */ \

]);
}

// code, example of use
write("Your rank is: " + GuildMap[rank][1] + "\n");

// more code...

While #de�nes are easy to use and seemingly convenient, they can also easily break your
code if you don't think twice and then yet another time before using them. Again, as the
interpreter just replaces whatever you have used as a key with the aliased text, you can easily
get into trouble even when you belive you're in the right.

Consider this seemingly inocuous example:
#define SQUARE(a) ((a) * (a))

Now consider what happens when you try this:

94 LPC 4.1

int s, x;
s = 3;
x = SQUARE(s++); // You might _think_ x = 9 and s = 4 when this is done.

Well, like I said, the preprocessor happily substitues the pattern you speci�ed, and what
you end up with is:

int s, z;
s = 3;
x = s++ * s++; // This makes x = 12 and s = 5!

Variations on this theme makes #de�ne a truly double-edged sword. So please use them as
sparingly as possible for as simple tasks as possible. The basic rule is to keep macros short and
fairly simple, however even then you can't be certain you won't be bitten somehow.

3.6 Traps and pitfalls
It's easy to get confused, to do things that look good but later prove to be pure disaster. This
chapter will deal with some of the more common mistakes you're likely to make.

Most of the stu� here has been mentioned before while explaining the functions that are
involved. However, judging by the amount of mistakes that being made all the time, it won't
hurt to rub it in once more.

3.7 Mapping/Array security
The problem, as indicated in chapter 2.2.9 earlier, is that mappings and arrays aren't copied
every time they are moved around. Instead only a reference is passed. This is the basis for a lot
of security blunders in the code. Consider this example where the object is a guild object that
handles the membership of a guild. The global string Council which is saved elsewhere using
save_object() contains the list of guild members.

string *Council;

public string
query_council()
{

return Council;
}

This looks all right, but... in fact you return the pointer to the original array. If someone
else wants to add a member to your guild council he only has to do this:

void
my_fix()
{

string *stolen_council;

stolen_council = YOUR_GUILD_OB->query_council();

stolen_council += ({ "olorin" }); // Add Olorin to the council
}

How to �x this then? Well, simply modify your query_council() routine to return Council
+ ({}) instead, and all is well. Easy to miss, but... sooooo important!

Chapter 3: Advanced LPC and Mudlib 95

3.8 Alarm loops
Look at this function:

public void
my_alarm_func(int generation)
{

set_alarm(1.0, 1.0, my_alarm_func(generation + 1));
tell_object(find_player("<your name>"), "Yohooo! " + generation + "\n");

}

What's happening here? Well, every second an alarm is generated, calling itself in one
second. What does this mean? Let's look at the development of alarm calls after the �rst call:

1 second:
Yohoo! 0 (original call)

2 seconds:
Yohoo! 1 (repeat of 1 sec 0)
Yohoo! 1 (new from 1 sec 0)

3 seconds:
Yohoo! 1 (repeat of 1 sec 0)
Yohoo! 2 (repeat of 2 sec 1)
Yohoo! 2 (repeat of 2 sec 1)
Yohoo! 2 (new from 2 sec 1)
Yohoo! 2 (new from 2 sec 1)

4 seconds:
Yohoo! 1 (repeat of 1 sec 0)
Yohoo! 2 (new from 3 sec 1)
Yohoo! 2 (repeat of 2 sec 1)
Yohoo! 2 (repeat of 2 sec 1)
Yohoo! 3 (repeat of 3 sec 2)
Yohoo! 3 (repeat of 3 sec 2)
Yohoo! 3 (repeat of 3 sec 2)
Yohoo! 3 (repeat of 3 sec 2)
Yohoo! 3 (new from 3 sec 2)
Yohoo! 3 (new from 3 sec 2)
Yohoo! 3 (new from 3 sec 2)
Yohoo! 3 (new from 3 sec 2)

... etc.

As you can see we have exponential growth here... VERY funny... the game will grind to
a halt practically at once! This, if you didn't know it, is so stupid as to be a demoting o�ense.
Is this easy to do by mistake? Well... I've seen it a few times. Often enough to warrant this
warning anyway. Oh, try this on Genesis and you're dead meat! Consider yourself warned!

3.9 Internal documentation
For you to read this tutorial and memorize it would be very
attering to me, but not really
practical. Instead, learn to make use of the internal documentation available on the MUD itself,
there's usually quite a bit available.

For Efuns, Sfuns and Lfuns you have the man command. As with all man commands it
accepts partial names syntax, so it's usually easy to �nd a function even if you aren't completely
certain of its name.

96 LPC 4.1

For example, you want to �nd the user id of an object, but you can't remember exactly what
the function was called. You have a pretty good notion it ended with the letters 'id' though:

> man -k *id

--- simul_efun:
export_uid geteuid getuid seteuid setuid

The output tells you that the matches can be found in the chapter simul efun of the manual.
Had their been matches in other chapters, they would have been displayed as well.

Now you also know that the function was 'getuid', so you just type man getuid (or even
man simul_efun getuid if you want to be very speci�c) to get the full text.

The really experienced LPC coder has a good grasp of which of the objects provided in the
mudlib does what, so that he'll know which object to inherit for a speci�c job. He is also rather
at home with what the function-sets each object de�nes, but naturally he doesn't know all of
them. What follows from this is that any coder, experienced or not, simply has to spend quite
a bit of time reading the objects to �nd out exactly how to use them when he needs them.

A great help in this respect is the sman command. The source code manual simply is a
collection of all headers of all functions in /cmd, /lib, /obj, /secure, /std and /sys.

The command allows you to search for partial names as well, so �nding the exact function
you need usually is a matter how having just an inkling of what you're after, then spending
some time with sman to �nd the exact command.

For example, you need to �nd the function in a player that returns his occupational guild
name, but you don't know which object de�nes it, nor what the function was called.

> sman -k *guild*
--- /lib/guild_support:
create_guild_support init_guild_support

--- /secure/master:
add_guild_master query_guild_type
guild_command query_guild_type_int
guild_filter_type query_guild_type_long_string
guild_sort_styles query_guild_type_string
load_guild_defaults query_guilds
query_guild_domain remove_guild_master
query_guild_is_master set_guild_domain
query_guild_long_name set_guild_long_name
query_guild_masters set_guild_phase
query_guild_phase set_guild_style
query_guild_short_name set_guild_type
query_guild_style

--- /std/guild/guild_base:
list_major_guilds query_guild_not_allow_join_guild
query_guild_keep_player query_guild_skill_name
query_guild_leader query_guild_style
query_guild_member

--- /std/guild/guild_lay_sh:
query_guild_incognito_lay query_guild_tax_lay

Chapter 3: Advanced LPC and Mudlib 97

query_guild_leader_lay query_guild_title_lay
query_guild_member_lay query_guild_trainer_lay
query_guild_name_lay query_guild_type
query_guild_not_allow_join_lay remove_guild_lay
query_guild_style_lay

--- /std/guild/guild_occ_sh:
query_guild_incognito_occ query_guild_tax_occ
query_guild_leader_occ query_guild_title_occ
query_guild_member_occ query_guild_trainer_occ
query_guild_name_occ query_guild_type
query_guild_not_allow_join_occ remove_guild_occ
query_guild_style_occ

--- /std/guild/guild_race_sh:
query_guild_family_name query_guild_style_race
query_guild_incognito_race query_guild_tax_race
query_guild_leader_race query_guild_title_race
query_guild_member_race query_guild_trainer_race
query_guild_name_race query_guild_type
query_guild_not_allow_join_race remove_guild_race

--- /std/living:
clear_guild_stat set_guild_pref
query_guild_pref_total set_guild_stat

Well, that was a lot of output, but with just a little bit of thinking applied to the results you
now know that the name of the function is query_guild_name_occ and that it can be found in
the �le /std/guild/guild occ sh. So, to get the header you now type sman /std/guild/guild_
occ_sh query_guild_name_occ.

The better your knowledge of the mudlib is, the better you can make your sman query and
thus produce a narrower result the �rst time. Not that there's anything wrong with typing the
command several times, of course!

NB! The index �les and manual entries for sman need to be regenerated when something
changes in the mudlib. For some reason it seems that the temptation to meddle in the mudlib
is too big a temptation for most mud administrations to resist for very long; so if you suspect
that the manual entries doesn't re
ect well on the actual code in the mudlib, remind them to
regenerate the manual. All this assuming, of course, that the people who change the mudlib
have the common sense of changing the headers of the functions they modify at the same time.

98 LPC 4.1

Chapter 3: LPC Index 99

LPC Index

#
#define . 32

#else . 33

#endif . 33

#if . 33

#ifdef . 33

#ifndef . 33

#include . 31

#pragma . 91

#undef . 32

'
'!' (logical not) operator . 23

'!=' (nonequality) operator 23

'%' (modulo) operator . 22

'&&' (logical and) operator. 23

'&' (booelan and) operator . 22

'*' (multiplication) operator 21

'+' (addition) operator . 21

'++' (increment) operator . 22

',' (comma) operator . 21

'-' (subtraction) operator 21

'--' (decrement) operator . 22

'/' (division) operator . 21

'::' parent-calling operator 37

'<' (lesser than) operator . 23

'<<' (boolean left shift) operator 23

'<=' (lesser or equal) operator 23

'=' (assignment) operator . 21

'==' (equality) operator . 23

'>' (greater than) operator. 23

'>=' (greater or equal) operator 23

'>>' (boolean right shift) operator 23

'@' - function keyword . 86

'^' (boolean xor) operator . 22

'|' (boolean or) operator . 22

'||' (logical or) operator . 23

'~' (boolean 1-complement) operator 22

'efun::' efun-specifying operator 38

'operator' - function keyword 86

;
; - End of statement or null statement 18

?
?: expression . 25

A
array references . 42

B
block statement . 19

break statement . 27

C
case statement (part 1) . 24

case statement (part 2) . 41

catch statement . 42

cloned object . 47

command parsing . 88

continue statement . 27

E
environment (outside) of an object 59

evaluation cost of running code 58

I
if/else statement . 24

inventory (inside) of an object 59

M
mapping references . 42

master object . 47

N
no_clone . 91

no_inherit . 91

no_shadow . 92

P
prefix allocation . 23

R
resident . 91

S
save_binary . 91

shadows, part 1 . 38

shadows, part 2 . 89

strict_types . 91

switch statement (part 1) . 24

switch statement (part 2) . 41

T
throw statement . 42

W
while statement . 27

100 LPC 4.1

Chapter 3: Efun/Sfun Index 101

Efun/Sfun Index

A
abs() - Absolute value . 72

acos() - Arcus cosinus trigonometric function
. 72

acosh() - Arcus cosinus hyperbolicus function
. 72

add_action() - Add a command catch-phrase linked
to a function . 54

all_inventory() - Get the list of objects in the
inventory . 59

allocate() - Allocate an array 29, 67

asin() - Arcus sinus trigonometric function . . 72

asinh() - Arcus sinus hyperbolicus function . . 72

atan() - Arcus tangens trigonometric function
. 72

atan2() - Argument of rectangular coordinte . . 72

atanh() - Arcus tangens hyperbolicus function
. 72

atof() - Convert a string to float 70

atoi() - Convert a string to integer 70

B
break_string() - Break a string in pieces. 62

C
call_other() - Object-external function call

. 36

calling_object() - Obtain a pointer to the
calling object . 48

capitalize() - Change the first letter of a
string to upper case . 61

cat() - List a portion of a file on screen 77

clear_bit() - Clear a bit in a field 64

clone_object() - Clone an object 50

command() - Execute a command 56

commands() - Get all information on the
available commands . 56

cos() - Cosinus trigonometric function 72

cosh() - Cosinus hyperbolicus function 72

creator() - Get the creator value from an object
. 49

ctime() - Convert a timetamp to text 65

D
deep_inventory() - Get the recursive list of all

objects in the inventory. 59

destruct() - Destroy an object 53

disable_commmands() - Disable reception of
command phrases . 55

E
ed() - Edit a file with the 'ed' editor 76

enable_commands() - Enable reception of command
phrases . 55

environment() - Get the environment object
referenence . 59

exp() - Exponential function, natural logarithm
. 72

explode() - Turn a string in to an array 65

F
fact() - Factorial (gamma function) 72

file_name() - Find the string equivalent of the
object pointer . 51

file_size() - Get information about a file . . . 75

file_time() - Get last modification time of a
file . 75

file_time() - Get time status for a file 65

find_living() - Find a named living object . . . 51

find_object() - Find an object reference, given
a string equivalent . 51

find_player() - Find a reference to a named
player . 52

floatp() - Determine if a variable is of type
float . 39

ftoa() - Convert a float to string 70

ftoi() - Convert a float to integer 70

functionp() - Determine if a variable is of type
function . 39

G
get_alarm() - Get a previously set alarm 58

get_all_alarm() - Get all alarms in an object
. 58

get_auth() - Get the authority variable from an
object . 50

get_dir() - Get the contents of a directory . . . 76

get_localcmd() - Get the command phrases for all
available commands . 56

geteuid() - Get the effective user id from an
object . 50

getuid() - Get the user id from an object 49

I
implode() - Turn an array into a string 65

input_to() - Get input from an interactive
player . 77

intp() - Determine if a variable is of type int
. 39

itof() - Convert an integer to float 70

L
last_reference_time() - Get time for last

reference of an object . 65

living() - Determine if an object is living or
not . 55

log() - Natural logarithm . 72

lower_case()- Change an entire string to lower
case . 61

102 LPC 4.1

M
m_delete() - Delete an entry in a mapping 30

m_delete() - Remove an entry from a mapping . . . 68

m_indices() - Return a list with the index part
of a mapping . 69

m_restore_object() - Restore an object from a
mapping . 70

m_save_object() - Save an object in a mapping
. 70

m_sizeof() - Find the size of a mapping 68

m_values() - Return a list with the value part of
a mapping . 69

mappingp() - Determine if a variable is of type
mapping . 39, 68

member_array() - Find if an element is part of an
array . 67

mkdir() - Create a directory 76

mkmapping() - Create a mapping 68

move_object() - Move an object to the inventory
of another object . 59

N
notify_fail() - Store a fail-message string . . 57

O
object_clones() - Find all clones of a given

object . 51

object_time() - Get creation time for an object
. 65

objectp() - Determine if a variable is of type
object . 39

P
parse_command() - Parse user commands 88

pointerp() - Determine if a variable is of type
array. 39, 67

present() - Determine if a named object resides
in the inventory . 60

previous_object() - Obtain a pointer to the
previous object . 48

Q
query_verb() - Get the last given command word

. 56

R
random() - Get a random number 72

read_bytes() - Read text from file by byte 74

read_file() - Read text from file by line 74

remove_alarm() - Remove a previously set alarm
. 58

rename() - Rename or move a directory 76

rename() - Rename or move a file 75

restore_map() - Restore a mapping from file . . 73

restore_object() - Restore an object's
variables from file . 73

rm() - Remove a file . 75

rmdir() - Remove a directory 76

rnd() - Get a random floating point value
between 0 and 1 . 72

S
save_map() - Save a mapping to file 73

save_object() - Save an object's variables to
file . 73

set_alarm() - Set an asynchronous alarm 58

set_auth() - Set the authority variable in an
object . 50

set_bit() - Set a bit in a field 64

set_living_name() - Set the name of a living
object . 52

seteuid() - Set the effective user id in an
object . 49

setuid() - Set the user id in an object 49

shadow() - Shadow object members 89

sin() - Sinus trigonometric function 72

sinh() - Sinus hyperbolicus function 72

sizeof() - Find the size of an array 67

sprintf() - Produce a formatted string 62

sqrt() - Square root . 72

sscanf() - Scan a string for formatted data . . . 71

str2val() - Reconvert a stored string value to a
value . 70

stringp() - Determine if a variable is of type
string . 39

strlen() - Find the length of the string 61

T
tail() - List the end of a file on screen 77

tan() - Tangens trigonometric function 72

tanh() - Tangens hyperbolicus function 72

test_bit() - Test a bit in a field 64

this_interactive() - Get a reference to the
interactive object . 53

this_object() - Obtain a pointer to the current
object . 48

this_player() - Get a reference to the currently
indicated player . 53

time() - Get the current time 65

U
update_actions() - Update all command words for

an object . 58

V
val2str() - Convert a value of any kind to string

. 70

W
wildmatch() - Match substrings within a string

. 64

write() - Write something on the screen 76

write_bytes() - Write/overwrite text to file
. 74

write_file() - Write/append text to file 74

write_sockect() - Write something to an
interactive player . 76

Chapter 3: Lfun/Macro Index 103

Lfun/Macro Index

C
convtime() - Convert a time stamp to text,

alternate method . 65

E
enter_env() - Be notified of entering the

environment of an object. 59

enter_inv() - Be notified of an object entering
the inventory . 59

I
id() - Identity check based on names in the

standard object . 60

init() - Called to add commands on entering
inventory or environment 54

IS_CLONE() - Determine if an object is a clone or
not . 52

L
leave_env() - Be notified of leaving the

environment of an object. 59

leave_inv() - Be notified of an object leaving
the inventory . 59

M
MASTER_OB() - Obtain the master object from an

object reference . 52

move() - Do a controlled move of an object to
another . 59

R
remove_object() - Destroy an object the gentle

way . 53

104 LPC 4.1

Chapter 3: Type Index 105

Type Index

A
array, allocation . 67

array, declaration and use . 28

array, definition . 16

F
float, definition . 16

function, definition (part 1) 16

function, definition (part 2) 40

function, definition (part 3) 85

I
int, definition . 16

M
mapping, declaration and use 30

mapping, definition . 16

mixed, definition . 17

N
nomask declaration . 40

O
object, definition . 16

P
private declaration . 40

public declaration . 40

S
static (function) declaration 40

static (variable) declaration 39

string, definition . 16

V
varargs function declaration 40

void, definition . 16

106 LPC 4.1

Chapter 3: Command Index 107

Command Index

A
At - Perform a command in the environment of a

player . 80

C
Call - Call a function in an object 80

Cat - Cat the file associated with an object . . 81

Clean - Destroy all non-interactive objects in
an object . 81

clone - Compile, load and clone an object to the
game . 79

D
destruct - Destroy a cloned object 79

Destruct - Destruct a specific object 81

Dump - Print information about an object 81

E
Ed - Ed the file associated with an object 82

G
Goto - Enter the inventory of an object 83

I
In - Perform a command in another object 83

L
load - Compile and load an object into

gamedriver memory . 79

M
man - Efun/Sfun/Lfun manual lookup command . . . 95

More - More the file associated with an object
. 83

Move - Move an object to a destination 83

R
Reload - Update, load, clone and replace an

object . 84

S
Set - Set a tracer variable 83

sman - Source code manual lookup command 96

T
Tail - Tail the file associated with an object

. 84

U
update - Update a loaded object 79

108 LPC 4.1

i

Table of Contents

LPC . 1

Copying Conditions. 3

Introduction . 5
i - Acknowledgments . 5
ii - Tutorial Setup . 5
iii - History of LPC . 6
iv - Gamedriver/Mudlib . 6
v - Administrative Setup . 6
vi - Writing code . 7

1 LPC basics . 13
1.1 Basic programming concepts . 13

1.1.1 What is programming? . 13
1.1.2 Compiled/Interpreted code . 13
1.1.3 Programs . 14
1.1.4 Objects . 14
1.1.5 Object makeup . 14

1.2 Basic LPC . 15
1.2.1 Comments . 15
1.2.2 Data types . 15
1.2.3 Variable declarations . 17
1.2.4 Function declarations . 17
1.2.5 Statements and Expressions . 18

1.2.5.1 Statements . 18
1.2.5.2 Expressions . 19
1.2.5.3 The block statement . 19
1.2.5.4 The ; statement . 19

1.2.6 Scope and prototypes . 19
1.2.7 Operator expressions . 21

1.2.7.1 Miscellaneous operators . 21
1.2.7.2 Arithmetic operators . 21
1.2.7.3 Boolean operators . 22
1.2.7.4 Conditional (logical) operators . 23
1.2.7.5 Comparative operators. 23

1.2.8 Pre�x allocation . 23
1.2.9 Conditionals . 23

1.2.9.1 The if/else statement . 24
1.2.9.2 The switch statement . 24
1.2.9.3 The ?: expression . 25

1.2.10 Precedence and Order of evalutaion . 26
1.2.11 Loop statements . 26

1.2.11.1 The for statement . 26
1.2.11.2 The while statement . 27

1.2.12 The break and continue statement . 27
1.2.13 Arrays and Mappings . 28

ii LPC 4.1

1.2.13.1 How to declare and use arrays . 28
1.2.13.2 How to declare and use Mappings . 29

1.3 The preprocessor . 31
1.3.1 The #include statement . 31
1.3.2 The #de�ne statement . 32
1.3.3 The #if, #ifdef, #ifndef, #else and #elseif statements . 33
1.3.4 What not to do with the preprocessor . 34

2 Essential LPC and Mudlib . 35
2.1 Peeking at things to come . 35
2.2 LPC revisited . 36

2.2.1 Function calls . 36
2.2.1.1 Making object-internal function calls . 36
2.2.1.2 Making single object-external function calls . 36
2.2.1.3 Making multiple object-external function calls . 36

2.2.2 Inheriting object classes . 37
2.2.3 Masking functions in runtime, part 1 . 38
2.2.4 Type identi�cation . 39
2.2.5 Type quali�ers. 39

2.2.5.1 The static variable quali�er . 39
2.2.5.2 The static function quali�er . 40
2.2.5.3 The private function/variable quali�er . 40
2.2.5.4 The nomask function/variable quali�er . 40
2.2.5.5 The public function/variable quali�er . 40
2.2.5.6 The varargs function quali�er . 40

2.2.6 The function data type, part 2 . 40
2.2.7 switch/case part 2 . 41
2.2.8 catch/throw: Error handling in runtime . 42
2.2.9 Array & Mapping references . 42

2.3 LPC/Mudlib interafce . 43
2.3.1 De�nition of standard and library objects . 43

2.3.1.1 The base object class, /std/object.c . 44
2.3.1.2 Standard object classes . 45
2.3.1.3 Standard library objects . 47

2.3.2 How to obtain object references . 47
2.3.2.1 Object references relative to the current object . 48
2.3.2.2 Creating objects. 49
2.3.2.3 Finding references relative to another object . 50
2.3.2.4 Object references to interactive objects . 52
2.3.2.5 Destroying objects . 53

2.3.3 Object-inherent command handling . 54
2.3.4 Alarms: Asynchronous function execution . 58
2.3.5 The inventory and the environment . 59
2.3.6 String functions. 61
2.3.7 Bit functions . 64
2.3.8 Time functions . 65
2.3.9 Array/string conversion . 65
2.3.10 Array functions . 66
2.3.11 Mapping functions . 68
2.3.12 Type conversion . 70
2.3.13 Math functions . 71
2.3.14 File handling . 73
2.3.15 Directory handling . 76
2.3.16 Screen input/output . 76

iii

2.4 Some mud commands . 78
2.4.1 Compile and load an object into gamedriver memory . 78
2.4.2 Compile, load and clone an object to the game . 79
2.4.3 Destroy a cloned object . 79
2.4.4 Update a loaded object . 79

2.5 The Tracer tool . 79
2.5.1 Perform a command in the environment of a player . 80
2.5.2 Call a function in an object . 80
2.5.3 Cat the �le associated with an object . 81
2.5.4 Destroy all non-interactive objects in an object . 81
2.5.5 Destruct a speci�c object . 81
2.5.6 Print information about an object . 81
2.5.7 Ed the �le associated with an object . 82
2.5.8 Enter the inventory of an object . 83
2.5.9 Perform a command in another object . 83
2.5.10 More the �le associated with an object . 83
2.5.11 Move an object to a destination . 83
2.5.12 Set a tracer variable . 83
2.5.13 Update, load, clone and replace an object . 84
2.5.14 Tail the �le associated with an object . 84

3 Advanced LPC and Mudlib . 85
3.1 Function data type, part 3 . 85

3.1.1 The basics of the function type . 85
3.1.2 Partial argument lists . 85
3.1.3 Complex function applications . 86

3.2 How to parse player commands . 88
3.3 Masking functions in runtime, part 2 . 89
3.4 Pragma directives . 91
3.5 Writing e�cient code . 92

3.5.1 E�cient loops . 92
3.5.2 Abusing de�nes . 93

3.6 Traps and pitfalls . 94
3.7 Mapping/Array security . 94
3.8 Alarm loops. 95
3.9 Internal documentation . 95

LPC Index . 99

Efun/Sfun Index . 101

Lfun/Macro Index . 103

Type Index . 105

Command Index . 107

iv LPC 4.1

	LPC
	Copying Conditions
	Introduction
	i - Acknowledgments
	ii - Tutorial Setup
	iii - History of LPC
	iv - Gamedriver/Mudlib
	v - Administrative Setup
	vi - Writing code

	LPC basics
	Basic programming concepts
	What is programming?
	Compiled/Interpreted code
	Programs
	Objects
	Object makeup

	Basic LPC
	Comments
	Data types
	Variable declarations
	Function declarations
	Statements and Expressions
	Statements
	Expressions
	The block statement
	The ; statement

	Scope and prototypes
	Operator expressions
	Miscellaneous operators
	Arithmetic operators
	Boolean operators
	Conditional (logical) operators
	Comparative operators

	Prefix allocation
	Conditionals
	The if/else statement
	The switch statement
	The ?: expression

	Precedence and Order of evalutaion
	Loop statements
	The for statement
	The while statement

	The break and continue statement
	Arrays and Mappings
	How to declare and use arrays
	How to declare and use Mappings

	The preprocessor
	The #include statement
	The #define statement
	The #if, #ifdef, #ifndef, #else and #elseif statements
	What not to do with the preprocessor

	Essential LPC and Mudlib
	Peeking at things to come
	LPC revisited
	Function calls
	Making object-internal function calls
	Making single object-external function calls
	Making multiple object-external function calls

	Inheriting object classes
	Masking functions in runtime, part 1
	Type identification
	Type qualifiers
	The static variable qualifier
	The static function qualifier
	The private function/variable qualifier
	The nomask function/variable qualifier
	The public function/variable qualifier
	The varargs function qualifier

	The function data type, part 2
	switch/case part 2
	catch/throw: Error handling in runtime
	Array & Mapping references

	LPC/Mudlib interafce
	Definition of standard and library objects
	The base object class, /std/object.c
	Standard object classes
	Standard library objects

	How to obtain object references
	Object references relative to the current object
	Creating objects
	Finding references relative to another object
	Object references to interactive objects
	Destroying objects

	Object-inherent command handling
	Alarms: Asynchronous function execution
	The inventory and the environment
	String functions
	Bit functions
	Time functions
	Array/string conversion
	Array functions
	Mapping functions
	Type conversion
	Math functions
	File handling
	Directory handling
	Screen input/output

	Some mud commands
	Compile and load an object into gamedriver memory
	Compile, load and clone an object to the game
	Destroy a cloned object
	Update a loaded object

	The Tracer tool
	Perform a command in the environment of a player
	Call a function in an object
	Cat the file associated with an object
	Destroy all non-interactive objects in an object
	Destruct a specific object
	Print information about an object
	Ed the file associated with an object
	Enter the inventory of an object
	Perform a command in another object
	More the file associated with an object
	Move an object to a destination
	Set a tracer variable
	Update, load, clone and replace an object
	Tail the file associated with an object

	Advanced LPC and Mudlib
	Function data type, part 3
	The basics of the function type
	Partial argument lists
	Complex function applications

	How to parse player commands
	Masking functions in runtime, part 2
	Pragma directives
	Writing efficient code
	Efficient loops
	Abusing defines

	Traps and pitfalls
	Mapping/Array security
	Alarm loops
	Internal documentation

	LPC Index
	Efun/Sfun Index
	Lfun/Macro Index
	Type Index
	Command Index

